高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

有关可能性教案四篇

更新时间:2023-08-13 04:21:45 来源:高考在线

可能性教案 篇1

  3.1 认识事件的可能性(教参)

  【教材分析】

  (一)教学内容分析:本节课内容属于概率范畴,意在帮助学生分清不确定的现象和确定的现象,使学生能定性地认识事件“可能、不可能、必然”发生的含义.让学生学会怎样用观察的方法去认识身边的不确定现象的数学规律.

  (二)学情分析:学生在日常生活中接触过一些不确定的现象,但他们对这些不确定现

  象的观察往往是零星的,短暂的.同时,学生对未知的事物又充满好奇且敢于质疑,很愿意投人到合作探究的实践活动中去.在学生小学阶段已学的有关事件可能性的认识的基础上,进一步使学生通过实例体会到可以用列举法来获得各种可能的结果数,从而使学生的认识达到升华.

  【教学目标】

  1.通过实例进一步体验事件发生的可能性的意义.

  2.了解必然事件、不确定事件、不可能事件的概念.

  3.会根据经验判断一个事件是属于必然事件、不可能事件,还是不确定事件.

  4.会用列举法(枚举、列表、画树状图)统计简单事件发生的各种可能的结果数.

  【教学重点、难点】

  1.事件发生的可能性的意义,包括按事件发生的可能性对事件分类.

  2.用列举法(列表、画树状图)统计简单事件发生的各种可能的结果数,需要较强的分析能力,是本节教学的难点.

  (基于对教材、教学大纲和学生学情的分析,制订相应的教学目标.同时,在新课程理念的指导下,注重对学生的动手能力、合作交流能力和对学生探究问题的习惯和意识的培养.这里没有用“使学生掌握…”,“使学生学会…”等字眼,保障了学生的主体地位,反映了教法与学法的结合,体现了新教材,新理念.)

  【教学过程】

  一、激趣、设疑、引题

  同学们做过抛掷硬币的游戏吗?请你试一试抛一枚硬币10次,把结果记录下来,看看有几次正面朝上,有几次反面朝上?

  做完游戏后,提出问题:

  (1)抛掷硬币10次,每次都正面朝上或反面朝上,可能吗?可能性大吗?

  (2)在刚才的游戏中,可能正反面同时朝上吗?

  (3)在刚才的游戏中,还有哪些事件一定会发生?你能得到哪些结论?

  事实上在我们的周围有很多事件一定不会发生,有些事件可能会发生,也可能不会发生,有些事件必然会发生.

  引出课题:认识事件的可能性.

  (利用学生都感兴趣的小游戏引入,可以激发学生的学习欲望,让他们迅速投入到数学知识的学习中,同时加强了人文数学的教育)

  二、观察、思考、巩固

  (一)观察和思考:你能举出几个生活中必然发生,不可能发生,

  可能发生的例子吗?(请大家发言)

  不仅在现实生活中有很多例子,而且在我们所学的各学

  科中也有很多例子.(利用多媒体展示“铁杵磨成针”“守株待兔”

  “愚公移山”这三个成语故事和天气预报的动画)

  同时给出必然事件、不可能事件和不确定事件的概念:

  在数学中,我们把在一定条件下必然会发生的事件叫做必然事件(certainevent);

  在一定条件下必然不会发生的事件叫做不可能事件(impossibleevent);

  在一定条件下可能发生,也可能不发生的事件叫做不确定事件(uncertainevent)或随机事件.

  (这里用贴近学生生活的事例和动感十足的多媒体展示,不但能激起学生的学习兴趣和热情,而且能让学生感受到数学与现实生活以及其他学科之间的联系,增强学生应用数学的意识.)

  (二)巩固、检测、反馈(利用题组区分概念):

  在课件巾设置能力区分度不同的三组题,以利于同学们正确理解概念.

  1.头脑运动会(设置一组容易题,以快速抢答的方式请同学在规定的时间内给出正确答案,对于没有把握的问题也可以向其他人求助.)

  问题:下面哪些事件是必然事件?哪些事件是不可能事件?哪些事件是不确定事件?

  (1)打开电视机,它正在播广告;

  (2)抛掷10次硬币,结果有3次正面朝上,8次反面朝上;

  (3)将一粒种子埋进土里,给它阳光和水分,它会长出小苗;

  (4)黑暗中我从我的一大串钥匙中随便选中一把,用它打开了门;

  (5)抛掷一枚均匀的骰子.掷得的数不是奇数就是偶数;

  (6)从一副洗好的只有数字1到l0的40张卡片中任意抽出一张,卡片上的数比6小;

  (7)一个普通的玻璃杯从10层楼落下,落到水泥地上会摔破.

  2.头脑风暴.

  例在一个箱子里放有1个白球和1个红球,它们除颜色外都相同。

  (1)从箱子里摸出一个球,是黑球.这属于那一类事件?摸出一个球,是白球或者是红球.这属于哪一类事件?

  (2)从箱子里摸出一个球,有几种可能?它们属于哪一类事件?

  (3)从箱子里摸出一个球,放回,摇均匀后再摸出一个球,这样先后摸得的两球有几种不同的可能?

  (列表或画树状图是人们用来列出事件发生的所有不同可能结果的常用方法,它可以帮助我们分析问题,而且可以避免重复和遗漏,即直观又条理分明.)

  不可能事件 可能事件 必然事件

  |a|的值

  a的倒数

  若a+b=0(a,b的之间关系)

  3.个性空间(设置一组稍难题,对所学知识进一步巩固).

  问题1:列表造句:

  问题2:(1)有2种不同款式的衬衣和2种不同款式的裙子,各取一件衬衣和一条裙子搭配,问有多少种搭配的可能?

  (2)笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子的门都打开.松鼠要先经过第一道门(A,B或c),再经过第二道门(D,或E)才能出去.问松鼠走出笼子的路线(经过的两道门)有多少种不同的可能?

  (在完成了两组区分度不同的练习之后,对于培养学生合作学习,激发学习兴趣都有帮助,至此本节课的教学目标已达成)

  (三)完成课本课内练习.

  三、概括、梳理、升华

  1.采用谈话式小结.教师提问:

  (1)你在这节课的学习中,最大收获是什么?

  (2)你对哪一点最感兴趣?

  (3)你受到哪些启迪?

  (4)你还有什么新的发现?

  (这种小结方式很容易沟通师生之间的感情,学生容易投入和参与,让学生自由说出自己的想法,把总结评价的主动权充分地交给学生,同时给学生一个开放的思维空间,培养学生的知识整理与语言表达能力,情绪会被再度调动起来,从而起到认知升华的作用)

  2.判断一个事件是属于必然事件,不可能事件,还是不确定事件.用列举法统计简单事件发生的各种可能的结果数.

  四、布置作业

  1、课本作业题

  2、1999年,全国少工委与中国青少年研究中心调查显示,46.9%的中小学生没有达到8时的睡眠时间标准,请你在班级里也做一次调查,你的结论是什么?

可能性教案 篇2

  【教材分析】

  (一)教学内容分析:

  可能性和概率是七年级下册第三章《事件的可能性》的第3节内容。这是在学生通过具体情境了解了必然事件、不确定事件、不可能事件等概念,并在具体情境中了解事件发生的可能性的意义,会用列举法(包括列表、画树状图)统计在简单问题情境中可能发生的事件的种数的基础上,对其中的可能性事件的进一步学习和提升。通过一些简单的事例,初步认识概率的意义,导出等可能性事件的概率公式,知道不可能事件的概率为0,必然事件的概率为1,不确定事件的概率大于0且小于1。这样的安排完全是按照《新课程标准》的分步到位,螺旋式上升的整体设计。

  教材中通过以下步骤建立概率的意义:通过实例认识事件发生的可能性及其大小——用事件发生的可能性的大小定义概率——在等可能性的前提下用比的形式来表示概率。其中第3个步骤“等可能性”这个前提十分重要。课本通过说理的方法来让学生认识等可能性。有关概率的概念,本教科书将在八年级下册学习频数和频率的基础上,主要安排在九年级上册学习。因此在本章教学中尽量不随意提高要求,主要是为以后的进一步学习打下扎实的基础。同时也进一步使学生了解概率的产生与发展是与生产、生活紧密联系的。

  (二)学情分析

  考虑到七年级学生的认知水平和知识结构,遵循启发式原则,在新课标的指导下,本节课采取发现与探究结合的教学方法。充分体现教师组织、引导、合作的作用,凸现学生的主体作用,让学生充分经历实际问题的情景,这是认识事件发生的可能性及其大小的唯一途径。教学中应通过大量的实际例子,让学生知道什么是等可能性?怎样认识两个事件发生的可能性是否相等?计算等可能事件发生的概率对学生来说不太容易。 涉及一些简单事件的概率计算,主要目的是让学生初步认识概率的意义,以及在等可能性的条件下概率的一种直观表现形式。这是学生学习了事件的可能性后的一个自然延伸。在教学中,应注意所学内容与日常生活、自然、社会和科学技术领域的联系。让学生感受到学习等可能性事件的概率的重要性和必要性。还应注意使学生在具体情境中体会事件的可能性与概率的意义。这些不仅是学习本节的关键,对于学好本章及至以后各章也是很重要的。

  【教学目标】

  1、 了解概率的意义

  2、 了解等可能性事件的概率公式

  3、 会用列举法(包括列表、画树状图)计算简单事件发生的概率

  进一步认识游戏规则的公平性

  【教学重点、难点】

  重点:概率的意义及其表示

  难点:例2涉及转盘自由转动2次,事件发生的条件构成比较复杂,是本节教学的难点。

  【教学过程】

  (一) 创设情境,引入新知:

  引例:小红与小李被同学们推选为班长,获票数相等,谁担任正班长哪?老师决定用抽签的办法来决定:做4个纸团,其中只有1个纸团里写有“正”字。由小红从中任取1个纸团。抽出有“正”字的纸团,就决定由小红担任正班长。这个办法公平吗?如果不公平,怎样改正才会使之公平?

  分析:小红从4个纸团中抽出写有“正”字的纸团的可能性是 ,即小红担任正班长的可能性是 。如果小红抽到写有“正”字的纸团,就决定由小红担任正班长,这个办法不公平。然后由学生共同合作讨论,得到改正的方法。而且,这改正的方法不止一种。要充分发挥学生的主观能动性和合作精神,让学生积极参与。

  解答:这种抽签决定正班长的办法是不公平的,如果仅对小红而言是不公平的。如果小李也按这个办法实行,小李担任正班长的可能性也是 ,也就是说,双方获胜的可能性相同。这个办法才是公平的。(改正的方案不唯一)

  (这样的引入,体现数学来源于生活,素材与学生现实紧密结合,从解决实际问题的欲望而促进对数学学习的兴趣,鼓励合作学习。从多角度思考,采用多种解决问题的办法,创造积极合作、讨论的氛围。)

  (二) 师生互动,探索新知:

  从此题解答中可以得到,在客观条件下使小红与小李抽签胜出的可能性大小相等(也称机会均等)那么才是公平的。而事实上,我们在日常生活中,常常会遇到指明可能性大小的情况:教师可举一些描述实际生活中有关可能性大小的几个例子:

  ①小明百分之百可以在一分钟内打字50个以上,即小明在一分钟内打字50个以上的可能性是100%。

  ②小华不可能在7秒内跑完100米,即小华在 秒内跑完100米的可能性是0。

  ③通过摇奖,要把一份奖品奖给10个人中的一个。每人得奖的可能性是 。

  接着类似的可以让学生自己结合生活经验独立举一些例子。

  (这样的安排是使学生有独立思考的空间并让学生充分发表自己的意见。只要合理、正确都予以高度肯定,激发学生的兴趣。但学生难免犯错,但相信同学之间也能纠错。教师放手让学生在互相讨论和互相评价中得以提高和加深对知识的理解。在学生评价中,集思广益,能体会到如何更完善和辨证地分析问题。)

  然后教师归纳,在教学中我们把事件发生的可能性的大小也称为事件发生的概率,一般用 表示。事件 发生的概率也记为 ,事件 发生的概率记为 ,依此类推。

  如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件 发生的可能的结果总数,那么就可用以下式子表示事件 发生的概率:

  强调:概率的数学意义是一种比率,这个概率公式适用的条件——事件发生的各种可能结果的可能性都相等。这一点学生容易疏忽。可根据学生具体情况确定是否再举一些实例加以辨别各种可能结果的可能性是否都相等。

  例如:任意抛掷一枚硬币,有“正面朝上”和“反面朝上”两种结果。由于硬币质地均匀,抛掷时具有任意性,所以出现“正面朝上”和“反面朝上”的可能性认为是相等的。适用等可能性事件的概率公式。而对于“投篮”,虽然也只有两种可能结果:“命中”与“没命中”,但由于投篮的命中率与投篮者的技术水平相关,“命中”与“没命中”的可能性通常是不相等的。

  (三) 讲解例题,综合运用:

  在弄清等可能性的含义后,就可以应用本节课的概率公式解决实际问题。

  例1:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是1的概率是多少?是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?

  分析:由于一枚骰子有六个面。当骰子停止运动后,每一个面朝上的可能性都为 。即为等可能性事件。因此可用概率的公式计算。

  解:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数有可能性相同的 种可能,即1、2、3、4、5、6。所以朝上一面的数是 只有 种可能,即朝上一面的数是 的概率 ;是偶数的有 种可能,即2、4、6。所以朝上一面的数是偶数的概率 ;是正数的有 种可能,即1、2、3、4、5、6。所以朝上一面的数是正数的概率 ;是负数的可能结果有 种,即所有可能的结果都不是负数,所以朝上一面的数是负数的概率 。

  一般地,必然事件发生的概率为100%,即 。不可能事件发生的概率为0,即 。而不确定事件发生的概率介于0与1之间,即 。

  (例1的目的主要巩固等可能性事件的概率公式,教师着重讲清解法的思路和方法步骤。解这类问题的基本思路是先分析判断是否适用等可能性事件的概率公式。然后统计所有可能的结果数和所求概率的事件所包含的结果数,再把它们代入公式求出所求概率。)

  从例1中自然引出必然事件的概率为1,不可能事件的概率为0,不确定事件的概率为 。

  (四) 练习反馈,巩固新知:

  做一做:

  1、 从你所在小组任意挑选一名同学参加诗朗诵活动,正好挑中你的可能性是多少?

  (根据班级各小组的实际人数回答)

  2、 转盘上涂有红、蓝、绿、黄四种颜色,

  每种颜色的面积相同。自由转动一次转盘,

  指针落在红色 区域的概率是多少?

  指针落在红色或绿色 区域的概率是多少?

  (1/4,1/2)

  (五)变式练习,拓展应用:

  例2:如图所示的是一个红、黄两色各占

  一半的转盘,让转盘自由转动2次,指针2

  次都落在红色 区域的概率是多少?一次落在

  红色 区域,另一次落在黄色 区域的概率是多少?

  分析:

  (1)由于转盘上红、黄两色面积各占一半,转盘自由转动一次,指针落在黄色 区域和落在红色 区域的'可能性是相同的。

  (2)统计所有可能的结果数,让学生自己列表或画树状图。应注意转盘的两次自由转动意味着事件的发生分两个步骤,各种可能包括了顺序的因素。

  (3)统计所求各个事件所包含的可能结果数。

  解:根据如图的树状图,所

  有可能性相同的结果数有4种:

  黄,黄;黄,红;红,黄;红,红。

  其中2次指针都落在红色 区域的可能结

  果只有1种,所以2次都落在红色 区域

  的概率 ;

  一次落在红色 区域,另一次落在黄色 区域的可能有结果2种,所以一次落在红色 区域,另一次落在黄色 区域的概率 。

  变式:在例2的条件下,再问:第一次落在红色 区域,第二次落在黄色 区域的概率是多少?讲解时注意让学生自己分析同例2的第二问的区别。从中求出变式的正确的解答为 。

  (本环节主要让学生体验变式中的探究学习,培养学生的严谨的科学态度,提倡题后反思。)

  (五) 反思总结,布置作业:

  引导学生总结本节课的所学知识,反思有什么样的收获。进一步激发学生的学习热情,也让参与反思的学生更多。在交流的过程中学会学习,完善自己的知识体系。然后布置作业,有助于学生应用能力和创新能力的培养。

  五、教学说明:

  本章计算等可能性事件的概率只涉及简单的独立事件。一般每次取1个,最多取3次。教师应把握好教学要求。

可能性教案 篇3

  教学内容:义务教育课程标准实验教科书三年级上册106页例3及“做一做”,练习二十的第4、6、10题。

  教学目标:

  1、知识目标:经历可能性的试验过程,知道事件发生的可能性是有大小的。

  2、能力目标:培养学生通过实验获取数据、利用数据进行猜测与推理的能力;并能列出简单试验所有可能发生的结果。

  3、情感目标:在活动交流中培养合作学习的意识和能力。

  教学重点:学生通过试验、收集和分析试验数据知道事件发生的可能性是有大小的。

  教学难点:利用可能性的知识解决实际问题。

  教学准备:两个转盘、盒子、红球24个、蓝球6个、漂亮的卡通人物、硬币、多媒体课件,颜色笔。

  教学过程:

  一、创设情境,激趣猜测

  1、听故事,激发学习兴趣

  (1)老师知道同学们最喜欢听故事,特意准备了一个《小猴子下山》的故事,想听吗?

  (动画播放:有一天,小猴子下山来。它看见玉米地里的玉米结得又大又多,就掰了一个扛着往前走。走着走着,来到桃树底下,看见满树的桃子又大又红,就扔了玉米去摘桃子。小猴子棒着几个桃子走到一个瓜地里,它看见满地的西瓜又大又圆,就扔了桃子去摘西瓜。它抱着一个大西瓜往回走,走着走着,看见一只小兔蹦蹦跳跳的多可爱,就扔了西瓜去追小兔。)

  2、猜测:请同学们想一想,小猴去追小兔,结果会是怎样呢?

  学生猜测:它有可能追到小兔,也有可能追不到小兔。

  师:那追到的可能性会......很小。

  3、有些同学认为小猴不可能捉到小兔,有些同学认为小猴还有可能捉到小兔,只是可能性很小,看来,事情的发生不仅有可能性,而且发生的可能性还有大、有小。今天这节课我们就继续来学习有关可能性的问题。

  (板书课题:可能性的大小)

  实践是最好的老师,下面我们就通过摸球试验来研究,好吗?

  二、探究、验证

  1、试验准备。

  (1)介绍试验材料。

  师:每个小组准备了一个盒子,盒子里都有红球和蓝球。

  (2)说明试验要求。

  (多媒体出示小组合作要求。)

  师:请同学们根据屏幕上的要求进行摸球试验,摸球20次,根据摸球的情况完成好摸球情况统计表和统计图,然后观察统计图思考以下两个问题:(一)摸到哪种颜色球的可能性大?

  (二)摸到哪种颜色球的可能性小?

  (3)提出注意事项。

  师:最后还请同学们特别注意:摸球时不能用眼晴看,摸球试验结束后不要打开盒子哟,能做到吗?下面请小组长拿出记录表和统计图,就可以开始试验了。

  2、合作试验、初步推测。

  (1)各小组试验,教师巡视。

  (2)观察、汇报。

  师:谁把你们组的试验结果汇报一下?

  生汇报。

  3、推理、验证、归纳。

  (1)观察。

  (集中展示各小组的摸球情况统计图。)

  师:这是我们6个小组的摸球情况统计图,请同学们仔细观察,你发现什么呢?

  生发现:每个小组都是摸出红球的可能性大,摸出蓝球的可能性小。

  师:(疑惑地)咦!每个盒子里都有红球和蓝球,为什么每个小组都是摸出红球的可能性大,摸出蓝球的可能性小呢?

  (2)思考。

  师:这都是你们的推测,到底对不对呢?有什么方法可以知道?

  师:好!莫老师数三声,我们就一起把盒子打开。

  师:请同学们数一数,红球有几个?蓝球有几个?看了这些颜色球的数量,再联系刚才的试验结果,你知道了什么?

  (红球的数量多,摸到的可能性大,蓝球的数量少,摸到的可能性小。)

  师:也就说,在摸球试验中,可能性的大小和什么有关系呢?

  (与球的数量有关。)

  师:如果让你在自己小组的盒子里再摸一次,你觉得摸到什么颜色球的可能性大?为什么?好,请六个小组长一起来摸摸看。

  (3)归纳。

  师:同学们通过刚才的摸球试验发现了可能性的大小与不同颜色球的数量有关。哪种颜色球数量多,它的可能性就......(大);哪种颜色球数量少,它的可能性就......(小)。那可能性小是不是就代表没有可能摸到呢?

  三、应用、拓展

  师:其实生活中还有不少事情的出现与可能性的大少有关,你们能运用可能性知识来解决一些生活中的实际问题吗?

  1、转转盘。(课本106页的“做一做”。)

  师:看,这里有个大转盘,想来转转吗?莫老师手里有许多漂亮的图片,你来选一种颜色格,如果你真的转到那种颜色格的话,我就送你一个图片,谁想来试试?还有谁想来?

  (生可能会选黄色)你为什么会选黄色格呢?

  (因为黄色格的数量多,红色格的数量少,所以转到黄色的可能性大。)

  转转试试看?

  不行,每次都是你们赢,我得换个转盘,这次如果你还是转到黄色格的话,我就送你一张更漂亮的图案,谁来转?(指名3名学生上台转)

  师:为什么只有()个同学拿到图案?

  (因为黄色格的数量少,蓝色的数量多,转到黄色的可能性小。)真聪明!那就把这张图案送给你吧?

  3、拓展。

  师:老师这里还有一个有趣的转盘(出示幸运转盘)。

  商场为了吸引顾客购物,经常让顾客参与购物转奖的游戏。他们为什么把一等奖的部分这样设计呀?

  (因为一等奖的奖品很贵重,所以要让人们转到一等奖的可能性小,转到其它奖的可能性大。)

  师:你们能用学到的数学知识解释生活中的问题,真是棒极了!

  2、设计转盘。(练习二十第4题。)

  师:看了这个转盘,你们想不想也来设计这样有趣的转盘?

  (1)课件出示设计要求。

  请同学们在书本109页上涂一涂。

  (2)谁想上来展示一下自己的作品?(用实物投影仪投影学生作品)

  问:在设计转盘时你是怎样想的呢?你们也是这样想的吗?

  (3)。

  师:在设计第一个转盘时我们只要使得红色格的数量比蓝色格多就行了,在设计第二个转盘时只要使得蓝色格的数量比红色格多就可以了,你们都设计出了符合要求的转盘了吗?

  4、解决问题。

  师:今天还有一位我们非常熟悉的朋友来到了我们的课堂,看谁来了?(课件出示小猫扑蝴蝶)

  师:小精灵明明带着他的魔棒来了,还有谁来了?(小猫)

  师:听,小精灵有问题要问了:天空中有7只黄蝴蝶,3只红蝴蝶,小猫随意扑一只,扑到哪种蝴蝶的可能性大呢?

  (小猫扑到黄色蝴蝶的可能性大。)

  师:那我们就来看看小猫是不是扑到黄色蝴蝶的可能性大。(课件演示小猫扑到了一只黄色的蝴蝶。)

  师:看来确实是扑到黄蝴蝶的可能大。现在天空中还有几只黄蝴蝶和几只红蝴蝶?小猫再随意扑一只,扑到哪种蝴蝶的可能性大呢?

  (天空中还有6只黄蝴蝶3只红蝴蝶,小猫随意扑一只,还是扑到黄色蝴蝶的可能性大。)

  师:我们一一看。(课件演示小猫扑到了一只红蝴蝶。)

  师:(疑惑地)咦!不是说小猫扑到黄蝴蝶的可能性大吗?怎么会扑到一只红蝴蝶呀?

  (因为天空中还有红蝴蝶,所以还是有可能扑到红蝴蝶的,只不过扑到红蝴蝶的可能性小一点。)

  师:扑到红蝴蝶的可能性小并不是说不可能扑到红蝴蝶。

  听!小猫又有问题想问了:你能想办法让我扑到红蝴蝶的可能性大吗?(增加红蝴蝶的只数,让它的只数比黄蝴蝶多。)

  (师用课件演示:小精灵用它的魔棒增加了7只红蝴蝶。)

  5、猜一猜。(练习二十第10题。)

  师:下面我们来做个游戏怎么样?这里有四个盒子,其中只有一个盒子里面放着一个硬币,你来猜一猜,可能会在哪个盒子里?下面我们来统计一下,注意:每个同学只能选择一次;认为在一号盒子里的举手,认为在二号盒子的,三号盒子,四号盒子。

  师:下面我们来揭晓,哦!原来在2号盒子里。也就说只有X个同学猜对了。现在请同学们想想,为什么猜对的人少,而猜错的人多呢?

  汇报:因为硬币只能在四个盒子中的一个,有三个盒子中没有,所以猜错的人数多,猜错的可能性就大。

  师补充:虽然猜对的可能性小,但我们也是有可能猜对的。

  四、、延伸

  1、延伸。

  师:其实,关于可能性的问题,在很久以前就有不少的数学家做过研究,最典型的是掷硬币的试验。同学们看一看,这是一枚1元的硬币,将硬币掷出,结果会怎样?掷到哪一面的可能性大呢?今天的作业是回家后,请你和爸爸、妈妈一起来做一做这个掷硬币的小试验,自定试验次数,老师建议次数多一点,这样试验结果才准确;并将硬币正、反面朝上的情况做好统计,明天把你的试验结果记录表拿回来全班一起交流好吗?

  2、。

  (1)今天这节课你学会了什么?最高兴的是什么?对自己的学习满意吗?你觉得老师表现得怎样?

  (3)师:刚才《小猴子下山》的故事还没讲完,想听完吗?

  出示录音:小兔子看到小猴追上来,马上串进草丛里不见了,这时太阳快下山了,小猴只好空着手回家去了。

  师:看了这个故事结果后,你们有话要跟小猴子说吗?

  小朋友们,我们可不要像小猴那样三心两意哦!

  五、板书设计

  可能性大小

  数量多可能性大

  数量少可能性小

可能性教案 篇4

  教材分析:

  本单元是在学生学习了简单的统计图表知识,初步体验了数据的收集、整理的过程,并能根据统计图表中的数据提出并回答简单的问题的基础上学习的,是进一步学习统计知识的基础。此外,对可能性知识的学习,是学生今后学习概率知识的基础。本单元教学的主要内容包括按不同的标准对事物进行分类统计;初步体验有些事件的发生是确定的,有些事件的发生是不确定的。教学重点是按不同的标准对事物进行分类统计,教学难点一是在分类统计时找到不同的分类标准,二是对事件发生可能性的理解。

  教学目标:

  1、会用不同的方法进行分类统计,完成相应的统计表,根据统计的结果提出问题、解决问题或提出建议。

  2、初步了解事件发生的确定性和不确定性,形成实事求是的态度和爱思考、爱动脑的习惯。

  3、通过现实情境体验数据的收集、整理和分析的过程,初步了解统计的意义,发展初步的统计观念。

  4、通过学生经历统计的过程,发展学生运用数学知识解决问题的意识。

  教学重难点:

  对分类标准和对事件发生可能性的理解。

  教学准备:

  课件

  教学过程:

  一、导课

  师:同学们看这里美不美?你观察到了什么?

  河边有鸭,还有鹅!有大的、有小的;有花的、黑的,还有白的!

  河里还有好多人游泳呢!有男的、有女的;有大人、有小孩,好多人呀!

  游泳的有多少人呢?大约有30多个呢!

  二、教学统计

  师:到底有多少人呢?怎样才能知道呢?

  (1)一个一个地数,数数就知道了。

  (2)一个个地数不容易数清楚,咱们统计一下吧!

  师:好!那怎样进行统计呢?

  1、我们可以先分类再数一数进行统计。

  2、我先数男的,再数女的。

  3、按戴泳帽和不戴泳帽的进行统计。

  师:那大家就开始行动吧!

  学生自己动手活动。

  师:这就是我们今天要学习的分类统计。

  三、自主练习

  1、分类统计。

  仔细观察图片,你看到了什么?你想怎样分类?(按种类或是颜色)

  2、一共有多少块积木?

  除了按颜色进行分类还可以怎样分类?(形状)

  3、统计本班学生的情况。

  思考:我们的同学可以按什么标准分类?(年龄、性别)

  四、总结

  作业:回家统计你们书橱的种类。

  板书设计:

  统计

  (按种类或是颜色) (年龄、性别)