高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

八年级物理《熔化和凝固》教案

更新时间:2023-08-08 06:35:01 来源:高考在线

八年级物理《熔化和凝固》教案

  一、本节三维目标要求

  1.知识与技能

  了解晶体和非晶体的区别。知道一些物质的熔点。

  知道熔化和凝固的含义。

  认识熔化是吸热过程,了解熔化曲线和凝固曲线的物理含义。

  2.过程与方法

  感知发生熔化和凝固的条件

  区别晶体和非晶体,感悟物质世界的美丽多姿。

  经历固体熔化的实验探究过程,学习实验探究的基本思路和方法。

  了解图像是一种比较直观的表示物理量变化的方法。学习根据实验数据做出物理图像的方法。

  3.情感、态度与价值观

  尝试对环境温度问题发表自己的见解。有关注环境温度的意识。

  尝试将生活和自然界中的一些现象与物质的熔点联系起来,将所学知识与生产、生活相结合。

  关注自然现象,产生乐于探究自然现象的兴趣和欲望。

  二、重点和难点

  本节重点是探究固体熔化过程的规律。

  本节难点是实验数据的图像转换方法。

  三、教学实施建议

  (一)教学过程

  本节安排3个教学板块:(1)认识晶体;(2)实验探究固体熔化过程的规律;(3)液体的凝固。

  1.认识晶体

  学生对将固体区别为晶体和非晶体认识不足,教师应着力调动学生的观察积累,利用教科书提供的图片,酌情展示一些常见晶体和非晶体的实物、模型、图片资源,首先让学生建立区别晶体和非晶体的宏观依据——形状规则与否的概念,初步认识晶体和非晶体的区别。

  2.实验探究固体熔化过程的规律

  不宜将本板块变为演示,要舍得投入时间,引领学生经历固体(含晶体与非晶体)熔化的实验探究全过程,初步领略科学探究的各个环节,学习科学探究的基本思路和方法。这也是课时安排建议本节2课时的主要原因。

  (1)首先,教师应引导学生注意晶体和非晶体不同的形状和不同的加工工艺,猜想到它们可能存在不同的熔化规律;在观察和思考的基础上,提出探究问题:熔化是在什么条件下发生的?熔化过程有什么特点?晶体和非晶体的熔化规律究竟有什么不同?

  (2)为了研究提出的问题,重要的是组织学生讨论,制订出分工合理、实用高效的探究讨划和实验设计方案。

  各组首先应选取一种晶体、一种非晶体作为对比研究对象;为了使结论具有普遍性,各组所选研究对象要在条件允许的情况下尽可能不同。其次,要探究熔化规律,自然需要将研究对象熔化,怎样熔化?在熔化过程中需要观测记录哪些数据和现象?需要什么实验器材或仪器?要否自己寻找或自制?这些都不要教师给定。这些问题需要师生讨论,达成共识,并要有所约定。例如,各组达成借助酒精灯加热晶体和非晶体使之熔化的基本思路,约定定时(例如每隔30s)记录加热过程中晶体和非晶体的温度,并确认当时研究对象的状态,直到熔化持续一段时间为止。至于各组探讨的具体问题,例如,停止加热后,熔化情况怎样?是选取冰和蜡,还是选取海波和松香或者别的作为研究对象?是用水浴法加热,还是直接加热?都应该以宽容的态度对待。需知:规范完美的科学探究纯属理想模型,在实际上是不存在的,以此模式组织探究只能是“假探究”;各组探究过程的差异应视为宝贵的课程和教学资源,使得合作交流、讨论评估更具实际价值。

  (3)在进行实验和收集证据过程中,应帮助学生解决一些实际问题:

  ①进一步巩固使用酒精灯或无烟腊加热物体的规范要求。

  ②了解实验室常用液体温度计的工作原理、构造特点、温度范围及分度值。

  ③学会测量温度,知道用温度计测量温度的正确方法和注意事项:

  ·确认温度计的量程和分度值。

  ·将温度计的玻璃泡与被测量的物体充分接触。

  ·当温度计的示数稳定后再读数。读数时,温度计仍需和被测物体接触(体温计除外)。

  ·读数时,视线要与温度计中液柱上表面相平。

  ④研究固体熔化时温度的变化规律,需要知道它们熔化过程中的温度。如何使待熔化物体均匀受热、使温度计的玻璃泡与待熔化固体充分接触呢?怎样使待熔化固体缓慢熔化,以便观察和测量呢?

  ·待熔固体应为细粒或粉末状。

  ·盛装待熔固体的试管应较细,以增大受热面积。装入试管中的待熔固体应适量(过少,则熔化过程太短,不利观测;过多,则受热不均匀)。

  ·优选间接加热(例如水浴)法,并用两枚温度计同监测试管内外的温度,调整控制热源加热力度,使内外温差保持在2~3℃左右。

  ·建议学生先做非晶体熔化实验,再做晶体熔化实验。用意有二:前者较易成功且易理解;能够对后者产生更强列的印象和反差。

  ⑤指导学生分工合作,高效安全地进行实验、收集证据。

  (4)在数据处理、讨论交流和评估环节,教师的主要工作应集中于:

  ①激活学生寻找和比较数据规律的需要。

  ②帮助学生回顾数学上描点作图的一般方法及其优点,指导学生在方格纸上描画物质熔化曲线。

  ③热情支持学生的附加探究实验,允许学生重做或部分重做实验,以便扩大交流和评估成果。

  ④为学生提供讨论和评估的必要物质条件,例如,提供视频展台或实物投影仪,用以展示各组所得熔化曲线和数据记录表格。

  ⑤实验结论不宜绝对化。为了达成共识,应组织学生对比分析、总结晶体和非晶体的熔化过程,归纳出二者的同异点,总结出晶体熔化的两个必要条件:①达到熔点;②继续加热(吸收热量)。

  (5)得出固体熔化过程的规律后,教师可予以扩展。

  ①给出熔点概念。指出熔点是晶体物质的基本属性之一。生活和自然界中,生产和技术上,许多现象和应用都与熔点有关。

  ②引导学生用分子动理论初步解释熔化的吸热过程。

  ③介绍常见物质的熔点,使学生对之有定性的了解。要求记住冰的熔点。

  3.液体的凝固

  教科书对液体的凝固处理较为粗略,教学中可引导学生采用有意的接受学习方式进行。

  (1)列举生活、生产、技术上的液体凝固实例。例如,水结成冰,塑料颗粒熔化后注入钢模冷却凝固成塑料盒,熔融状态下的玻璃轧制成玻璃板……

  (2)凝固过程和凝固曲线。引导学生对比冰(晶体)熔化过程的三个阶段,采用类比的方法,分析水(液体)凝固过程的三个阶段的吸放热特点和温度变化特点。要明确:虽然同种物质的凝固点和熔点相同,但两种曲线却具有不同的物理含义。同时总结归纳出熔融状态下的晶体凝固的两个必要条件:①达到凝固点;②放出热量。还应对比分析熔融状态下的晶体与非晶体的凝固过程的异同点。使学生获得相对完整的固液变化的认识。

  为了同一目的,建议布置课外实验探究活动:利用冰箱设计实验,研究水的凝固过程并画出水的凝固图像。

  (3)组织学生综合运用熔化和凝固规律,特别是联系5.1自我评价中的屋檐上冰锥的形成过程,交流讨论教科书有关“火山爆发后”内容,要求学生做到运用所学知识和方法进行必要的推理分析。

  熔岩在流淌过程中,将因向周围放热而导致温度不断降低。虽然刚从火山口喷出时岩浆温度相同,但凝固点(熔点)高的矿物岩浆将首先凝固,这些凝固的矿物要么沉积下来,要么随未凝固的岩浆向前推移,直到所有岩浆均在火山口周围依山傍势凝固。基本上按橄榄石、辉石、角闪石、黑云母、正长石、白云母、石英排列。

  (二)材料准备与实验设计

  1.实验材料准备

  本节教学需要准备的材料有温度计、试管、酒精灯或无烟腊、铁架台等。

  冰块、海波、峰蜡、松香等均由实验室统一制备。其中冰块由实验室用电冰箱统一制备,学生只需按设计要求制成碎冰即可使用。海波,化学名称“硫代硫酸钠”,分子式Na2S2O3,商用海波常为较大的晶粒,通常在试剂商店或照相器材商店有售。海波熔点为48℃,因含有杂质可略有不同。

  顺便提及,以往教学中常选固态萘(熔点为80.5℃)作为研究熔化和凝固过程的实验器材,因为萘在加热过程中会放出有毒挥发物,现已废止。

  2.实验设计

  (1)在用大苏打(硫代硫酸钠)做晶体熔化实验时,试管中晶体粉末不宜过多,只要全部熔化后仍能浸没温度计测温泡即可。实验中温度计测温泡不要和试管壁接触,为了使晶体粉末受热均匀,可在粉末中混一些碎的细铜丝,加热时应不断搅拌。为了缩短加热时间,不要用冷水,起始温度可高些(35~40℃之间),每隔l分钟记录l次温度,大苏打的熔点在47~49℃左右(由于总会含有杂质,一般不可能正好是48℃)。实验时,最好用另一温度计测水温。如果环境温度太高,水温上升太快,会使大苏打熔化太快,画出熔化图线的平直部分太短。为了充分显示晶体熔化时温度不变的特性,加长曲线的平直部分,实验中当加热到大苏打开始熔化时,应适当减缓加热,甚至停止加热一会儿,让大苏打逐步从50~60℃的水中吸热熔化。从开始熔化到全部熔化大约持续4分钟左右温度不变,整个实验中约需记录12~15个数据,持续15分钟。纵轴起始温度应为35℃,所标温度范围35~60℃。

  (2)探究冰的熔化规律:

  用图5-2-1所示的学具装置也可以探究冰的熔化规律。注意观察状态变化过程,并且每隔10秒钟记录一次温度,直到全部熔化后再过2分钟为止。

  (3)利用电冰箱研究水的凝固过程:

  可安排为课外实践活动,意在对课堂教学中液体凝固类比结论的验证。

  四、发展空间

  (一)“自我评价”参考答案

  1.0℃,BC段

  2.非晶体

  (二)“家庭实验室”指导

  吊冰游戏:盐的熔点高于冰的熔点。冰上撒些盐,因盐的温度高于0℃,致使局部冰面熔化,盐溶化在水中吸热,使绳子周围冰面上熔化的冰重新凝固,故而几秒钟后就能用绳子把冰吊起来。

  类似的,可做“复凝”游戏:将一块冰置于桌面上,把两端悬挂重锤的细线横置于冰块上表面,则可见细线缓慢切过冰块落至桌面,而冰块仍是“坚冰”一块,依稀还可找到细线“切豆腐”的痕迹,但“豆腐”重新又连成一片。这是利用冰在压力下熔点提高的特性实现的。

  晶体花园:水在蒸发过程中吸热,将加速食盐水的凝固,由于瓦片放置和色素沉着,碗中各处食盐结晶析出的形状殊异,因而生成漂亮的“晶体花园”。

  (三)“物理在线”和“走向社会”指导

  太空材料:组织学生下载网上信息或去图书馆查找资料,走访专家学者,集中讨论以下问题:(1)什么是太空材料?(2)太空材料成本昂贵,为什么要制选太空材料?(3)你希望太空实验工厂制造什么新的材料?说说你的设想。

  五、教学资源

  (一)教学视频

  1.晶体世界(见“教师备课系统”光盘)

  2.火山(见“教师备课系统”光盘)

  3.太空材料(见“教师备课系统”光盘)

  (二)参考资料

  1.温度计的发展

  温度计是测温仪器的总称。依据所用测温物质的不同和测温范围的不同,有煤油温度计、酒精温度计、水银温度计、气体温度计、电阻温度计、温差电偶温度计、辐射温度计和光测温度计等。

  世界上第一支温度计是意大利科学家伽利略于1593年发明的。那时的温度计是一根一端敞口的玻璃管,另一端带有一个玻璃泡(如图5-2-2)。使用时先给玻璃泡加热,然后把玻璃管插入水中;测温时将玻璃球与不同温度的物体相接,由于管内空气的热胀冷缩,玻璃管图5-2-2伽利略发明的第一支温度计

  中的水面就会上下移动,根据移动的多少就可以判定温度的变化和温度的高低。这种温度计,受外界大气压强等环境因素的影响较大,所以测量误差大。后来伽利略的学生和其他科学家做了各种改进,其中比较突出的是法国人布利奥在1659年制造的温度计,他把玻璃泡的体积缩小,并把测温物质改为水银,这样的温度计已具备了现在温度计的雏形。之后德国人华伦海特在1709年利用酒精,在1714年又利用水银作为测量物质,制造了更精确的温度计。他观察了水的沸腾温度、水和冰混合时的温度、盐水和冰混合时的温度;经过反复实验与核准,最后把一定浓度的盐水凝固时的温度定为0℉,把纯水凝固时的温度定为32℉,把标准大气压下水沸腾的温度定为212℉,用℉代表华氏温度,这就是华氏温度计。

  在华氏温度计出现的同时,法国人列缪尔(1683-1757)也设计制造了一种温度计。他把冰点和沸点之间分成80份,定为自己温度计的温度分度,这就是列氏温度计。

  1742年,瑞典人摄尔修斯改进了华伦海特温度计的刻度,他把水的沸点定为零度,把水的冰点定为100度。后来他的同事施勒默尔把两个温度点的数值又倒过来,就成了现在的百分温度,即摄氏温度,用℃表示。华氏温度与摄氏温度的换算关系可以表达为

  ℉=9/5℃+32,或℃=5/9(℉-32)。

  1848年英国物理学家开尔文创立了开氏温标:也称热力学温标。热力学温标每一度的大小和摄氏温标完全相同,不过,它不是以水的冰点作为零度的,而是以理论上所说的分子热运动将完全停止时的温度,即-273.16℃作为零度,用K表示。要物质的热运动完全停止是绝对不可能的,-273.16℃只不过是人们可以无限接近,但永远也不可能达到的温度。这一温度也叫做绝对零度。

  现在在说英语的国家,如英国、美国、加拿大、澳大利亚和印度等国,常用华氏温度;而世界科技界和工农业生产中,以及我国、法国等大多数国家则常用摄氏温度;在科学研究中,一般使用热力学温标。(张计怀)

  2.太空材料

  1987年以来,我国多次利用返回式卫星搭载,进行空间材料加工试验,目前已取得较大进展。把需要合成的材料,放人特制的同一容器中,装进太空炉,随卫星一道送人太空,在太空通过太空炉,对材料进行加温,熔化,再降温,变成固体,合成出新的材料,然后伴随着返回式卫星,回到地球,由此加工出的材料,人们俗称它为太空材料。

  1987年,我国在太空成功地制造出砷化镓晶体,当时在国际科技界引起高度重视。10年来,我国又先后利用返回式卫星,在空间试验加工出了碲镉汞、锑化铟、铅铝合金等数十种新型材料。

  由于地面和空间环境有别,所以加工材料可利用的外界条件不同,空间实际上是人类所需要探索研究的新领域。铝和铅在地面的比重相差很大,铝轻铅重,即使把它们熔化变成液体状,最后铅也要沉在容器的下面,铝则要浮在上面,二者实在是难以混合在一起。到了太空,基本克服了地球的引力,铝和铅就可非常容易地混合在一起。

  根据同样的道理,如果我们在太空,把气泡加入到熔化后的金属中去,并使它们均匀分布,这样就有可能制造出比普通泡沫还轻的金属体。由于物体到了太空几乎没有轻重之分,所以能够比较容易地把不同比重的物质合成在一起,从而得到地面难以得到的更有价值的材料。用砷化镓制造出的微波晶体管,是卫星通讯和移动通讯性能优越的口和耳。在太空合成的高质量的碲镉汞单晶,用于制造红外探测器,则是导弹、遥感卫星更为敏锐的.眼睛。

  人类在空间制造材料,目前还处在试验和起步阶段。今后随着有关学科和技术的进步,一定会得到更大发展,从而更加广泛地服务于国防和国民经济建设。

  3.影响熔点的因素

  熔点,实质上是该物质固、液两相可以共存并处于平衡的温度,以冰熔化成水为例,在一个大气压下冰的熔点是0℃,而温度为0℃时,冰和水可以共存,如果与外界没有热交换,冰和水共存的状态可以长期保持稳定.

  物质的熔点并不是固定不变的,有两个因素对熔点影响很大.

  (1)压强。平时所说的物质的熔点,通常是指一个大气压时的情况;如果压强变化,熔点也要发生变化。熔点随压强的变化有两种不同的情况.对于大多数物质,熔化过程是体积变大的过程,当压强增大时,这些物质的熔点要升高;对于像水这样的物质,与大多数物质不同,冰熔化成水的过程体积要缩小(金属铋、锑等也是如此),当压强增大时冰的熔点要降低。

  如下两图中OL称为固液两相平衡曲线,又称为熔化曲线.该曲线的左方表示固相稳定存在的区域,右方一定的区域是液相稳定存在的区域,而线上的任一点,都代表固液两相平衡共存的状态。OL线表示了该物质的熔点随压强变化的规律。两图中OL线的斜率都很陡,说明物质的熔点随压强的变化很小,例如冰的熔点,每增加一个大气压,熔点才下降0.0075℃,而要使冰的熔点下降1℃,则必须使压强增加1.75X107Pa,约为大气压的170倍。两个图的斜率的正或负,反映了两类物质随压强的增大,熔点升高或降低的规律。

  (2)溶有杂质。以上讨论的都是纯净的液态物质,如果液体中溶有少量其他物质,或称为杂质,即使数量很少,物质的熔点也会有很大的变化,例如水中溶有盐,熔点就会明显下降,海水就是溶有盐的水,海水冬天结冰的温度比河水低,就是这个原因.饱和食盐水的熔点可下降到约-220℃,北方的城市在冬天下大雪时,常常往公路的积雪上撒盐,只要这时的温度高于-22℃,足够的盐总可以使冰雪熔化.合金又称为固态溶液,因为合金在液态时也可以看做是一种金属溶于另一种金属之中的溶液,因此合金的熔点比单质低属熔点要低,而且比组成合金的每一种金属的熔点都低.例如锡的熔点是232℃,铅的熔点是327℃,按一定比例组成的铅锡合金的熔点则只有170℃,而由铋、锡、铅、镉组成的合金的熔点可降低到70℃,常应用来制作保险丝、焊丝等。