小学教案《列方程解应用题》1
教学内容
列方程解应用题
教学目标
1.使学生学会根据两个未知量之间的关系,列方程解答求含有两个未知数的应用题。
2.使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。
3.使学生学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。
教学重点
列方程解答数量关系稍复杂的两、三步应用题。
教学难点
形如:ax+bx=c的数量关系
教学理念
培养学生自主探究、合作交流的学习方式。提高学生的检验能力。
教师活动过程
学生活动过程 备注
一、复习铺垫
1练习二十一T1
学生回答
2根据条件说出数量关系式:
果园里的桃树和梨树一共有168棵。
果园里的桃树比梨数多84棵。
桃树棵数是梨树的3倍。
学生回答数量关系式
3你能选择其中两个条件,提出问题,编成一道应用题吗?试试看!
学生自主编题,口头说题
4依据学生回答,教师出示题目。
A.根据条件(1)、(2)编题:果园里梨树和桃树一共有168棵,桃树比梨树多84棵。梨树和桃树各有多少棵?
B.根据条件(1)、(3)编题:果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(例1)
C.根据条件(2)、(3)编题:果园里的桃树比梨树多84棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(想一想)
教师巡视,了解情况。
二.探究新知
1.学生尝试例1
引导学生画出线段图
集中反馈:生说师画图
2.教师组织学生汇报
学生介绍算术解法时,教师引导学生画线段图理解数量间的关系。
学生介绍方程解法时,注重让学生说出怎样找数量间的相等关系。
3.小组讨论。
解这道题,你认为算术方法和列方程解哪一种比较容易找到解题的数量关系,为什么?
用方程解,设哪个数量为X比较合适?用什么数量关系式来列式呢?
4.学生独立完成想一想。
这一题与例1有什么相同的地方?有什么不同的地方?
明确三点:1、一般设一倍数为X 。2、把几倍数用含有X的式子表示。3、通过列式计算,可以检验两个得数的和(差)及倍数关系是否符合已知条件。
5完成课本94页练一练
指名板演,其余集体练习,评讲时让学生说说是怎样想的,怎样检验?
三、小结
本课学习了什么内容?你有哪些收获?
四、作业
小学教案《列方程解应用题》2
有些数量关系比较复杂的应用题,用算术方法求解比较困难。此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。
例1商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元。问:胶鞋有多少双?
分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。
设胶鞋有x双,则布鞋有(46-x)双。胶鞋销售收入为7.5x元,布鞋销售收入为5.9(46-x)元,根据胶鞋比布鞋多收入10元可列出方程。
解:设有胶鞋x双,则有布鞋(46-x)双。
7.5x-5.9(46-x)=10,
7.5x-271.4+5.9x=10,
13.4x=281.4,
x=21。
答:胶鞋有21双。
分析:因为题目条件中黄球、蓝球个数都是与红球个数进行比较,所以
答:袋中共有74个球。
在例1中,求胶鞋有多少双,我们设胶鞋有x双;在例2中,求袋中共有多少个球,我们设红球有x个,求出红球个数后,再求共有多少个球。像例1那样,直接设题目所求的未知数为x,即求什么设什么,这种方法叫直接设元法;像例2那样,为解题方便,不直接设题目所求的未知数,而间接设题目中另外一个未知数为x,这种方法叫间接设元法。具体采用哪种方法,要看哪种方法简便。在小学阶段,大多数题目可以使用直接设元法。
例3某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?[
分析与解一:用直接设元法。设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程
80x-40=(30x+40)×2,
80x-40=60x+80,
20x=120,
x=6(座)。
分析与解二:用间接设元法。设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。
(x-40)×80=(2x+40)×30,
80x-3200=60x+1200,
20x=4400,
x=220(米3)。
由灰砖有220米3,推知修建住宅(220-40)÷30=6(座)。
同理,也可设有红砖x米3。留给同学们做练习。
例4教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍。问:最初有多少个女生?
分析与解:设最初有x个女生,则男生最初有(x-10)×2个。根据走了10个女生、9个男生后,女生是男生人数的5倍,可列方程
x-10=[(x-10)×2-9]×5,
x-10=(2x-29)×5,
x-10=10x-145,
9x=135,
x=15(个)。
例5一群学生进行篮球投篮测验,每人投10次,按每人进球数统计的部分情况如下表:
还知道至少投进3个球的人平均投进6个球,投进不到8个球的人平均投进3个球。问:共有多少人参加测验?
分析与解:设有x人参加测验。由上表看出,至少投进3个球的有(x-7-5-4)人,投进不到8个球的有(x-3-4-1)人。投中的总球数,既等于进球数不到3个的人的进球数加上至少投进3个球的人的进球数,
0×7+1×5+2×4+6×(x-7-5-4)
= 5+8+6×(x-16)
= 6x-83,
也等于进球数不到8个的人的进球数加上至少投进8个球的人的进球数,[ 3×(x-3-4-1)+8×3+9×4+10×1,
= 3×(x-8)+24+36+10
= 3x+46。
由此可得方程
6x-83=3x+46,
3x=129,
x=43(人)。
例6甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的.重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克。如果一个人带150千克的行李,除免费部分外,应另付行李费8元。求每人可免费携带的行李重量。
分析与解:设每人可免费携带x千克行李。一方面,三人可免费携带3x千克行李,三人携带150千克行李超重(150-3x)千克,超重行李每千克应付4÷(150-3x)元;另一方面,一人携带150千克行李超重(150-x)千克,超重行李每千克应付8÷(150-x)元。根据超重行李每千克应付的钱数,可列方程
4÷(150-3x)=8÷(150-x),
4×(150-x)=8×(150-3x),
600-4x=1200-24x,
20x=600,
x=30(千克)。
练习23
还剩60元。问:甲、乙二人各有存款多少元?
有多少溶液?
3.大、小两个水池都未注满水。若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水。已知大池容积是小池的1.5倍,问:两池中共有多少吨水?
4.一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽。在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍。问:男孩、女孩各有多少人?
5.教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍。问:教室里原有多少个学生?
6.含金多少克?
7.一位牧羊人赶着一群羊去放牧,跑出一只公羊后,他数了数羊的只数,发现剩下的羊中,公羊与母羊的只数比是9∶7;过了一会跑走的公羊又回到了羊群,却又跑走了一只母羊,牧羊人又数了数羊的只数,发现公羊与母羊的只数比是7∶5。这群羊原来有多少只?
小学教案《列方程解应用题》3
教学目标:
1.通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题.
2.让学生独立思考,合作交流,确定等量关系,正确用方程解答应用题
3.培养学生利用恰当的方法解决实际问题的能力。
教学重点:
通过复习,使学生弄请已知量与未知量的联系,找出题目中的等量关系.
教学难点:
通过复习,使学生能够准确的找出题目中的等量关系.
教学过程:
一、复习准备.(P107)
1.找出下列应用题的等量关系.
①男生人数是女生人数的2倍.
②梨树比苹果树的3倍少15棵.
③做8件大人衣服和10件儿童衣服共用布31.2米.
④把两根同样的铁丝分别围成长方形和正方形.
( 学生回答后教师点评小结)
我们今天就复习运用题目中的等量关系解题.(板书:列方程解应用题)
二、新授内容
1、教学例3、
(1)、一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?
①.读题,学生试做.
②.学生汇报(可能情况)
(90+75)×4
提问:90+75求得是什么问题?再乘4求的是什么?
90×4+75×4
提问:90×4与75×4分别表示的是什么问题?
(由学生计算出甲乙两站的铁路长多少千米。)
(2)、甲乙两站之间的铁路长660千米,一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站。经过多少小时相遇?
(先用算术方法解,再用方程解)
①、660÷(90+75)=?
②方程
解: 设经过x小时相遇,
(90+75)×x =660 或者, 90×x +75×x =660
让学生说出等量关系和解题的思路
教师小结(略)
(3)、甲乙两站之间的铁路长660千米。一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车从乙站开往甲站,经过4小时相遇。货车每小时行多少千米?
( 先用算术方法解,再用方程解)
①、(660—90×4)÷4=?
②、方程
解:设货车每小时行x千米
90×4+ 4x = 660 或者(90 + x )×4 = 660
让学生说出等量关系和解题的思路
教师小结(略)
让学生比较上面三道应用题,它们有什么联系和区别?
比较用方程解和用算术方法解,有什么不同?
教师提问:这两道题有什么联系?有什么区别?
三、巩固反馈.(P109---1题)
1.根据题意把方程补充完整.
(1)张华借来一本116页的科幻小说,他每天看x 页,看了7天后,还剩53页没有看.
_____________=53
_____________=116
(2)妈妈买来3米花布,每米9.6元,又买来x千克毛线,每千克73.80元.一共用去139.5元.
_____________=139.5
_____________=9.6×3
(3)电工班架设一条全长x 米长的输电线路,上午3小时架设了全长的21%,下午用同样的工效工作1小时,架设了280米.
_____________=280×3
2.(P110----4题)解应用题.
东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨.剩下的煤如果每天烧1.1吨,还可以烧多少天?
小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法.
3.思考题.
甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港.客船开出12小时后与货船相遇.如果货船每小时行15千米.客船每小时行多少千米?
四、课堂总结.
通过今天的复习,你有什么收获?
五、课后作业.
(P110---5题)不抄题,只写题号。
板书设计:
列方程解应用题
等量关系 具体问题具体分析
例3:一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千
小学教案《列方程解应用题》4
一、教学内容:
教材第94页例1、“练一练”,练习二十—第1—4题。
二、教学要求:
使学生学会用方程解答数量关系稍复杂的求两个数的(和倍、差倍)应用题,能正确说出数量之间的相等关系;学会用检验答案是否符合已知条件来检验列方程解应用题的方法,提高学生列方程解应用题和检验的能力。
三、教学过程:
一、复习导入。
1、复习:果园里有梨树42棵,桃树的棵数是梨树的3倍。梨树和桃树一共有多少棵?(板演)
2、根据下列句子说出数量之间的相等关系。
杨树和柳树一共120棵
杨树比柳树多120棵
杨树比柳树少120棵
3、出示线段图:梨树:
桃树:
从图上你可以知道什么?如果梨树的棵树用x表示,桃树的棵数怎样表示?
4、出示条件:母鸡的只数是公鸡的5倍。
根据这个条件,你可以知道什么?如果公鸡的只数用x表示,那么母鸡的只数可以怎样来表示?
5、在括号里填上含有字母的式子。(练习二十一第1题)
6、交流:板演,你是根据怎样的数量关系来解答的?
7、导入:在四年级时我们学习了列方程解应用题,谁来说一说列方程解应用题的步骤是怎样的?今天这节课,我们继续来学习列方程解应用题。(出示课题)
二、教学新课。
1、教学例 果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?
(1)齐读。
(2)这道题已知什么条件,要求什么问题?边问边画出线段图。
桃树的棵数是梨树的3倍,把哪个数量看做一份?用线段图来表示我们先画梨树,桃树的棵数有这样的几份?还告诉我们什么条件?这道题的问题是什么?
(3)“梨树和桃树各有多少棵”是什么意思?
这道题要求的数量有两个,你认为用什么方法做比较简便?
(4)下面我们就以小小组为单位进行讨论:这道题用方程来做,学生讨论。
(5)交流。
(6)通过讨论和同学们的交流,你们会解这道题了吗?请做在自己的作业本上。一生板演,其余齐练。
校对板演。还可以怎样求桃树的棵树?
(7)方程解好了,下面要做什么了?你准备怎样检验?(把问题作为已知数进行检验,)生说,师板书,齐答。
2、教学想一想。
现在我们把第一个条件改一下,变成“果园里的桃树比梨树多84棵”,你能列方程解答吗?(出示改编题)
一生板演,其余齐练。
集体订正。提问:设未知数时你是怎样想的?你是根据什么来列方程的?
3、请同学们比较这两道题,在解答上有什么相同的地方?又有什么不同的地方?为什么会不同?因此,你认为列方程解应用题的关键是什么?(找出数量之间的相等关系。)
4、小结。
从刚才的两道题可以看出,如果两个数量有倍数关系,就可以把1份的数看做x,几份的数就是几x;把两部分相加就是它们的和,两部分相减就是它们的差。我们可以根据数量之间的相等关系,列方程来解答。
三、巩固练习。
1、练一练。校对:你是根据哪个条件说出数量之间的相等关系的?
2、只列式不计算。
一个自然保护区天鹅的只数是丹顶鹤的2.2倍。
(1)已知天鹅和丹顶鹤一共有96只,天鹅和丹顶鹤各有多少只?
(2)已知天鹅的只数比丹顶鹤多36只,天鹅和丹顶鹤各有多少只?
3、选择正确的解法。
明明家鸡的只数是鸭的3倍,鸡和鸭一共56只,鸡和鸭各有多少只?
(1)解:设鸡和鸭各有x只。 x+3x=56
(2)解:设鸡有x只,鸭有3x只。 x+3x=56
(3)解:设鸭有x只,鸡有3x只。 x+3x=56
商店里苹果的重量是梨的3.6倍,苹果比梨多26千克。苹果和梨各有多少千克?
(1)解:设梨有x千克,苹果有3.6x千克。 3.6x-x=26
(2)解:设梨有x千克,苹果有3.6x千克。 3.6x+x=26
四、课堂总结。
今天我们一起学习了什么?你感觉到今天学的应用题有什么特点?那你有哪些收获呢?还有什么疑问吗?
老师有个疑问,想请你们帮我解决:为什么今天学的应用题用方程来做比较好,而复习题用算术方法做比较好呢?说明同学们掌握得不错。
五、作业:
练习二十一/2—5
相关文章
西藏高考各个大学录取分数线排名表和最低位次2024-06-13 17:51:39
内蒙古高考各个大学录取分数线排名表和最低位次2024-06-13 17:50:37
青海高考各个大学录取分数线排名表和最低位次2024-06-13 17:49:36
新疆高考各个大学录取分数线排名表和最低位次2024-06-13 17:48:39
云南高考各个大学录取分数线排名表和最低位次2024-06-13 17:47:34
山西高考各个大学录取分数线排名表和最低位次2024-06-13 17:46:23
宁夏高考各个大学录取分数线排名表和最低位次2024-06-13 17:45:24
陕西高考各个大学录取分数线排名表和最低位次2024-06-13 17:44:26
烛之武退秦师教案设计2023-08-18 06:02:51
《认识PCLogo系统》的教案2023-08-06 11:11:43
体积和表面积的比较五年级数学教案2023-08-16 08:51:54
烛之武退秦师教案设计2023-08-18 06:02:51
《认识PCLogo系统》的教案2023-08-06 11:11:43
体积和表面积的比较五年级数学教案2023-08-16 08:51:54
幼儿园中班主题活动《玩小货车》教案2023-08-09 15:47:59
中班科学公开课教案及教学反思《和电池做游戏》2023-08-01 16:24:19
找最小公倍数教学教案2023-08-05 06:17:52