高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

圆柱教学反思十五篇)

更新时间:2023-08-07 19:37:42 来源:高考在线

圆柱教学反思1

  圆柱是人们在生产、生活中经常遇到的几何形体,学习这部分内容,有利于发展学生的空间观念。《圆柱的认识》这节内容包括认识圆柱、圆柱的组成及特征、圆柱侧面和底面以及圆柱侧面展开图等知识。学生对圆柱侧面展开图的理解与掌握,既是对圆柱特征的深入认识,也是对后面学习求圆柱表面积起到铺垫作用,学生对掌握圆柱侧面展开图的知识,是起着承上启下的作用。

  一、 了解学生的认知起点和生活经验,确定好教学起点

  圆柱形的建筑物(如客家围屋、岗亭)和一些生活用品(如圆柱形鱼罐头盒、蜡烛),对学生来说并不陌生,并且学生在学习《圆柱的认识》,是在对周长、面积概念的理解,对长方形的面积和圆的周长会计算的基础上进行教学的。通过教学前测和课前与学生交流,从数学学科的知识体系的角度进行分析,找准知识的生长点;了解学生的实际生活经验,找到本节课的起点和着力点。

  二、在活动过程中找到线与体之间的关系,渗透数学思想方法

  1、体与面的转化,感受到几何直观的魅力

  (1)学生在剪这一操作过程中,思考侧面展开图会是什么形状呢?

  学生在操作(沿高剪)过程中,侧面展开图会是长方形,学生容易理解。

  (2)体与面的转化,感受到几何直观的魅力

  圆柱体侧面 展开 长方形

  (3)侧面展开图还可能出现什么图形呢?

  ①沿高剪侧面展开图还可能出现正方形;

  ②斜着剪侧面展开图可能出现平行四边形;

  ③侧面展开图可能是梯形吗?

  面对这些问题,只能在课前进行预设,并不一定要在本节课上面面俱到,后面的教学中根据实际,逐步渗透与讲解。

  2、探索侧面展开图线与体的关系,渗透数形结合思想

  (1)探索侧面展开图线与体的关系

  a=c b=h

  实物表征

  图像表征

  符号表征

  (眼看到的) (脑想到的信息) (抽象出关系式)

  (2)借助于数的精确性来阐明形的某些属性,即“以数解形”。

  形缺数时难入微,以数解形,可以使数直观化。圆柱侧面展开图的长和宽的(数据大小)反映出侧面(形)的大小。

  (3)借助形的几何直观性来阐明数之间某种关系。即“以形助数”。

  数缺形时少直觉,以数辅形,可以将数形象化,学生容易发现圆柱底面周长和侧面展开图的长相等的关系。

  数学基础知识是一条明线,直接用文字写在教材里,反映着知识间的纵向联系。数学思想方法是一条暗线,反映着知识间的横向联系,常常隐含在基础知识的背后,需要人们加以分析、提炼才能显露出来。

圆柱教学反思2

  圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在圆的体积公式推导过程中,给予学生足够的时间和空间,激发学生的探究的欲望,培养学生的空间想象力。我把圆柱体拼成一个长方体,就是把一个新图形转换成一个我们学习过的图形,通过讨论,争鸣从而得出比较深层的数学知识,这种思维的火花,我们老师应及时捕捉,让它开得绚丽多彩,从而让学生的个性能得到充分的培养。让学生老师这样才能寓教于乐,从而达到了事半功倍的效果。在教此内容时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

  一、展示知识的发生过程,让学生在参与中学习。

  现代教育认为课堂教学首先不是知识的传递过程,而是学生的发展过程;首先不是教师的教授过程,而是学生的学习过程;首先不是教师教会的过程,而是学生学会的过程。展开部分,首先让学生大胆猜想,圆柱体的体积可能等于什么?大部分学生猜测圆柱体的体积可能等于底面积×高。在验证圆柱的体积是否与圆柱的底面积和高有关的过程中,我让两名学生到台上演示,学生兴致很高,都想到台上进行操作,被选出进行演示的学生非常认真地进行操作,而其他学生也是非常认真的进行观察。因此推导得出圆柱体积公式时,学生感到非常好懂,也学得很轻松。

  二、在讨论交流中学习。

  通过实验验证之后,让学生看课件后,小小组进行了如下讨论:

  (1)拼成的近似长方体体积与原来的圆柱体积有什么关系?

  (2)拼成的近似长方体的底面积与原来的圆柱底面积有什么关系?

  (3)拼成的近似长方体的高与原来的圆柱高有什么关系?这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强

  团队协作意识。在这一环节中,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

  本节课采用新的教学方法,取得了较好的教学效果,不足之处是:学生亲身体验的感受不够,因为圆柱体积演示器只有一套,所以,只能是个别学生进行操作,大部分学生只能远距离观察。有些学生因看得不清楚而观察、思考得不正确。如果条件允许,演示器多一些,能让学生人人都进行操作,我想学生的参与率、学生动手能力、学生的观察与思考、教学效果都会更好。

圆柱教学反思3

  这星期上了圆柱圆锥这一单元,通过实践操作、小组合作,学生对公式的推导过程掌握的还不错。

  在实际教学时,我先复习了长方体(正方体)的体积计算方法,再由课件演示配合圆柱体积的演示器,学生兴趣很浓厚,很容易就推到出了圆柱的体积公式。然后做了书上的课后习题。这个内容,我没有根据书本进行教学,依照课件的演示逐渐推导出公式的。

  在等底等高的条件下,圆锥的体积正好是圆柱体积的1/3?对于这一结论的得到。我在教学时准备好学具:一个圆锥和圆柱(等底等高的),水适量。通过老师的演示试验,我们很快得到了圆锥里的水要往圆柱里倒3次,才能把圆柱倒满,从而很轻松的记住了1/3。

  从学生的练习看,单独求圆柱圆锥的体积,完成好;如果其中添加了要求圆柱的表面积,存在了几个问题。

  1、单位,少部分学生老是忘记区分面积和体积单位,有的干脆一个也不写。

  2、求圆柱表面积要计算圆柱的两个底面积,求完表面积之后再计算圆柱体积,有的学生就直接拿两个底面积之和去乘以高了。

  3、虽然学生记住了圆锥是它等底等高圆柱体积的1/3,但再计算中仍有一部分学生忘记把1/3乘进去。

  在学生练习时,我们老师一定要提醒学生答题细心,每一步想清楚了再动笔。

圆柱教学反思4

  本课主要内容是圆柱的体积公式的推导及其应用。因为公式的推导过程是个难点,因此在教学设计时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,帮助学生理解公式的来源,从而获得知识。下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。

  一、在教学过程的设计方面

  1、导入时,力求突破教材,有所创新

  圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、

  流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。

  2、新课时,要实现人人参与,主动学习

  学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学生经历先想—观察—动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。

  3、练习时,形式多样,层层递进

  例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型。

  a.已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。

  b.已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2h。

  c.已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2h。

  d.已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2h。

  e.已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2)2h。

  因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。

  二、在教学策略方面

  我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。而在巩固练习这一环节,我用多媒体发挥它大容量、节省时间的优点。

  三、在教学技能方面

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是学生在自己艰苦的学习过程中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。但是我觉得这个引导的过程需要教师有认真准备,随时能解决课堂上可能出现的一些问题。传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景。

  四、存在的问题

  不足之处是:由于这节课的设计是以学生为主、发挥学生的主体作用,要充分展示学生的思维过程,所以在学生动手实践、交流讨论和思考的时间上教师应合理把握,不能时间较多,否则会导致练习的时间较少。

  另外,在练习设计上,题形虽然全,但觉得题量偏多,因为这部分练习涉及的计算多、难,这样练习题还需精心设计。

圆柱教学反思5

  本节课主要是引导学生探索并掌握圆柱的体积公式,主要重视了以下几方面:

  1、重视先猜想、再验证的思路来引入教学。

  新课伊始,课件出示三个几何体的底面和高,引导学生来观察这三个几何体,发现它们的底面积都相等,高也都相等。进一步引导思考:想一想,长方体和正方体的体积相等吗?为什么?猜一猜,圆柱的体积与长方体和正方体的体积相等吗?学生认同,并提出等于底面积乘高。教师再次抛出问题:这仅仅是猜想,那用什么办法验证呢?今天这节课就来研究这个问题。

  2、重视利用知识、方法的迁移来展开教学。

  本课的例题探索,有一个目标就是使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。因此,笔者在执教时,根据陈星月的回答顺势复习了圆面积的推导:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。接着提问:那么,受这个启发,那我们能不能将圆柱转化成长方体来计算体积呢?首先实物演示圆柱切拼的过程。把圆柱的底面平均分成16份,切开后可以拼成一个近似的长方体。然后进行课件演示,发现:把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。这样有利于激活学生已有的知识和经验,使学生充分体会圆柱体积公式推导过程的合理性,并不断丰富对图形转化方法的感受。

  3、重视通过核心问题的讨论和板书的精当设计来突出重点、突破难点。

  核心问题即指中心问题,是诸多问题中相对最具思维价值、最利于学生思考及最能揭示事物本质的问题。它是在教学过程中,为学生更好地理解和掌握新知、更好地积累学习经验和方法,针对具体教学内容,提炼而成的教学中心问题。就如圆柱体积的计算而言,在这节课的教学过程中,教师抓住“圆柱的体积可能跟圆柱的哪些条件有关呢?”“拼成的长方体与原来的圆柱有什么关系?”“要计算圆柱的体积一般要知道哪些条件?”这三个问题,使学生在获取圆柱体积公式的同时又了解了体积公式的由来,并及时总结了思考问题的方法。核心问题也可以指为了探究知识的来龙去脉而在关键环节提出的指向性问题。

  当然,需要注意和改进的地方是:书写格式的规范。

圆柱教学反思6

  “圆柱体积计算公式的推导”是在学生已经学习了“圆的面积计算”、“长方体的体积”、“圆柱的认识”等相关的形体知识的基础上教学的。同时又是为学生今后进一步学习其他形体知识做好充分准备的一堂课。

  课始,教师创设问题情境,不断地引导学生运用已有的生活经验和旧知,探索和解决实际问题,并制造认知冲突,形成了“任务驱动”的探究氛围。

  展开部分,教师为学生提供了动手操作、观察以及交流讨论的平台,让学生在体验和探索空间与图形的过程中不断积累几何知识,以帮助学生理解现实的三维世界,逐步发展其空间观念。

  练习安排注重密切联系生活实际,让学生运用自己刚推导的圆柱体积计算公式解决引入环节中的两个问题,使其认识数学的价值,切实体验到数学存在于自己的身边,数学对于了解周围世界和解决实际问题是非常有作用的。

  教师无论是导入环节,还是新课部分都恰当地引导学生进行知识迁移,充分地让学生感受和体验“转化”这一解决数学问题重要的思想方法。同时,还合理地运用了多媒体技术,形象生动地展示了“分成的扇形越多,拼成的立体图形就越接近于长方体”,有机地渗透了极限的初步思想。

圆柱教学反思7

  本节课的教学重点要引导学生掌握本单元的知识结构,在充分利用教材的知识形成学生知识网络的基础上,提高学生分析、解决实际问题的能力。针对本课的教学设计,有以下几点思考:

  1、加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。这部分内容的设计加强了与生活的联系,为教师组织教学提供了思路。在教学认识圆柱体和圆锥之前,可以让学生收集、整理生活中应用圆柱、圆锥的实例和信息资料,以便在课堂中交流。在实际教学中,学生认识圆柱、圆锥后,还可以让学生根据需要创设和制作一个圆柱或圆锥形的物品的活动情境,既可激发学生的学习兴趣,又可提高学生运用数学的意识和能力。

  2、重视探究归纳。教学中让学生自己去收集、整理、交流,通过这样的学习方式,充分发挥学生学习的自主性,把课堂还给学生,提高学生自主获取知识的能力。

圆柱教学反思8

  今天上了圆柱的体积这一课,通过实践操作、小组合作、分析、讨论、汇报,学生对公式的推导过程掌握的还不错。但在教学这节课以前我就认为,人教版教材对这节知识的教学内容限制了学生思维的发展。

  教材上采用“V=SH”,圆柱、长方体都直立摆放。也就是把圆柱转化成长方体,长方体的底面积等于圆柱的底面积S,高就是圆柱的高H,因为长方体的体积等于底面积乘高,所以圆柱的体积V=SH。

  而实际操作过程中,并不一定是直立摆放的,如果把侧面的那一面当成底面摆放,这时长方体的长等于圆柱的高H,宽等于圆柱底面周长的一半∏R,高等于圆柱的半径R,因为长方体的体积等于长乘宽乘高。所以圆柱的体积V=∏R×R×H,也就是V=∏R2H。(把切面当成底面来摆放也同样可以推出公式)。

  事实学生在学习过程中也会有这样的思考,只是教材把学生的求异思维拉了回来。

  不知这是不是我个人的片面考虑?

圆柱教学反思9

  教育不只是一种简单的“告诉”,因为学生拥有自己的独立思考水平和认知系统,当他们遇到一个新的待解决的问题情境时,如何调动学生自觉而主动地从自己已有的知识架构和认知经验中摸索、收集、调动处理问题的方法和策略呢?在这节课的教学上,我是注重了对学生学习方法的引导。数学课程标准在“空间与图形”这一部分内容中,也提出要注重通过观察、操作、推理等活动,逐步认识简单几何体的形状、大小,并发展学生的空间观念。

  在新的数学课堂教学策略中,“探索交流、解决问题”是学生课堂中学习数学的重要方式。本节课一开始,我没有直接告诉学生圆柱的特征,而是在课前参与的基础上,让他们自己观察,触摸自己制作好的圆柱,并与小组内成员的作品进行分享交流,得出圆柱的特征。让学生深刻体验发现知识的过程。另外在教学圆柱的侧面时,我充分让学生动手实践,操作,在一定的提示引导下,让学生知道了圆柱侧面沿着高展开可能会出现的图形是长方形、正方形,而且自己弄明白了展开图形与圆柱各部分之间的关系。

  圆柱是一种比较常见的立体图形。在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。这节课是由观察、触摸、猜测、操作验证、巩固、应用这几个环节组成。组织学生通过观察手中的圆柱实物,初步感知圆柱特征,对圆柱特征有一个较为完整的把握。在教学中,我注意了对方法的反馈。实际教学中出现了两种情况:一是部分学生把学习长方体、正方体的认识方法迁移过来,比较有序地说出圆柱的某些特征,二是更多的学生还不能迁移方法,而是从自己最感兴趣或最为明显的.特征着手进行说明。接着利用学生的好奇心和急于探究的心理,让学生看一看、摸一摸手中的圆柱体实物,使学生从对圆柱的初步认识到慢慢地发现其中的知识。再把各自的发现进行对比、证明,总结得出圆柱的特征。

  在探索圆柱体侧面的特征时,特别注重学生自己操作、讨论、探索,学生得到的结论很多,如圆柱体侧面沿着高展开后得到长方形、正方形,然后再给学生时间去发现展开图与圆柱体侧面有怎样的关系,学生的思维得到了很好的培养,在通过对表格的填写,引导学生得出圆柱侧面展开后与圆柱的关系。学生对新知识是好奇的。在教学新知识时,让学生亲自动手去摸一摸、比一比,采用小组合作、讨论、交流等形式,让学生多角度、多形式地表达自己的思维过程,整体地感知圆柱的侧面展开与圆柱的关系。在讨论圆柱的侧面时,设置悬念,先让学生猜一猜:“这个圆柱的侧面展开会是一个什么图形呢?”通过猜测再进行验证,学生动手操作、小组合作学习、互相交流,

  整个教学过程中,圆柱的特征成为学生探究的主体需要,学生由被动的接受者、参与者变成了探索者、创造者。而教师仅仅是引导者、组织者和合作者。课堂是学生的课堂,教师应少讲、少说,把大量的时间和空间还给学生,让学生积极开展合作学习,实现生生多向交流。

圆柱教学反思10

  《圆柱与圆锥》单元终于落下帷幕……

  我想教过这一单元的老师对它的感觉肯定是“想说爱你不容易”,学生也一定是“恨你在心口难开”。呵呵~~这一切的源头都得归功于本单元的“计算”。

  对于本单元的计算,我曾采取了以下策略,以期学生能少“恨”一些:

  1、熟记3.14与一些常用数相乘的结果。

  2、启动学生的简算意识,教给学生一些计算的技巧。

  ①对于一些有特殊数据的计算,如计算圆柱体积:2.5×2.5×3.14×8,引导学生利用乘法结合律使计算简便,(2.5×2.5×

  8)×3.14=50×3.14=157 ;

  ② 计算圆锥的体积时,可让学生把乘数中能和1/3约分的先约分,然后再乘:如4×4×3.14×6×1/3,可引导学生把6和1/3先约分,然后再乘,(4×4×2)×3.14=100.48 ;

  ③对于一般数据的题目,如:3×3×3.14×8,也尽量把3.14以外的数先相乘,最后再和3.14相乘,即(3×3×8)×3.14=72×3.14=226.08,以提高计算正确率。

  3、计算量很大的题目,采取“只列式,不计算”。

  对于计算繁杂程度高的题目,我通常是采取“只列式不计算”的策略,既可保持学生的兴趣又可节省时间。“银行的工作人员通

  常将50枚硬币摞在一起,用纸卷成圆柱形状。(底面直径2.5cm,高9.25cm)你能算出每枚1元硬币的体积大约是多少立方厘米吗?”这题的列式是1.25×1.25×3.14×9.25÷9,如果真让学生计算出结果的话,恐怕既费时又费力。所以我们教师也不要拘泥于算。

  4、启动学生的估算意识。

  估算可以使学生把正确结果的范围框定,对于一些有明显错误的计算,容易发现问题。如:1.2×1.2×3.14×6=271.296,估算:1×1×3×6=18,正确的结果应该是在18左右,而现在271.296偏离正确的结果太远了,一定是错误的。正确的结果应该是27.1296。当然,如果真的为学生的兴趣考虑的话,可以使用计算器。但是由于考试的“紧箍咒”,又有几个老师能够如此洒脱与超然呢?

  我不能做到绝对的超然,但我也努力了!呵呵

圆柱教学反思11

  前几天我配合学校教研活动讲了一节公开课。这节课是在整理和复习圆柱圆锥基本概念公式以及基础的习题后,针对学生容易出错的圆柱圆锥体积关系的变式习题进行的一节练习课。

  让我始料未及的是这节课毁了我从教十二年来所积累的所有自信心。一节课就让我看清了很多人的嘴脸。教研活动对课不对人,针对这节课优点在哪,存在的不足之处又在哪?这样的课型下回再上该怎么去上?这样每一位讲课教师才有信心上好下一节课。而不是因为一节课而否定一个人。哪一位教师也不能保证自己节节课都讲的很精彩,更何况是一节练习课。我们现在的教学又走进了另一个误区,以为一节课学生没有与老师进行互动,没有进行合作学习,就没有体现学生自主学习,进行点对点的课就是一节很不成功的课。我不这样认为。不是常说要在课前了解学生的情况吗

  ?我作为教师我很清楚我们班学生对这些知识点的掌握情况,讨论也好,合作也好,起不到应有的教学效果。很多学生跟着走了一个过场而已。看似热闹,实际效果不一定好。还不如老师和一部分学生讲,其他人听效果好。他们并不是陪衬。因为我觉得听会也是一种学习。我们不是一直都在讲教学的实效性吗?难道老师们节节课都有讨论有合作吗?讲授讲授有讲有授。有些课是没有必要合作的。

  这只是我个人的一点看法,希望我们的教研活动越搞越成功,能有更多的老师参与。但不要一棍子把人打死。必竟给别人评课和自己讲课是不一样的。给教师一个上进的机会。

圆柱教学反思12

  圆柱的体积教学反思

  在这节课学生进行数学探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,非常遗憾。但我使用了课件-----把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体,展示切拼过程.学生虽然没有亲身经历,但也一目了然.,学习效果还可以。

  圆柱的体积练习课教学反思

  本节的练习,提高了学生运用数学知识解决身边问题的能力,从学数学的角度,注意了数学知识的特点。运用已有的知识经验解决新的问题,在新旧知识的联系上,使学生想象合理、联系有方。

圆柱教学反思13

  这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“ 从生活中来到生活中去” 的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。

  一、让学生在现实情境中体验和理解数学

  在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?圆柱形橡皮泥的体积你会求吗?)学生听到教师提的问题多在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,或是求压路机滚筒的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的欲望。

  二、鼓励学生独立思考,引导学生自主探索、合作交流

  在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。通过实验、操作、自主探究,实现学生主体地位、学习方式的转变,有效地培养学生的创新意识。的思想。

  三、练习时,要形式多样,层层递进

  例题“ 练一练” 中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型:

  1 .已知圆柱底面积(s )和高(h ),计算圆柱体积可以应用这一公式:V=sh

  2 .已知圆柱底面半径(r )和高(h ),计算圆柱体积可以应用这一公式:V=πr?h 。

  3 .已知圆柱底面直径(d )和高(h ),计算圆柱体积可以应用这一公式:V=π(d/2)?h 。

  4 .已知圆柱底面周长(c )和高(h ),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)?h 。

  5 .已知圆柱侧面积(s 侧)和高(h ),计算圆柱体积可以应用这一公式:V=π(s 侧÷h÷π÷2)?h 。

  在巩固练习中,只要从这五种类型去考虑,做到面面俱到,逐层深入,由易到难,学生才能真正掌握好计算圆柱体积的方法。

圆柱教学反思14

  一、导入时,要突破教材,要有所创新

  在进行圆柱的体积的导入时,课本上是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,那么再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜,《圆柱体积》教学反思。

  猜想计算方法固然有好处,但要让学生马上做实验,理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,我认为,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。

  二、 新课时,要实现人人参与,主动学习

  根据课标要求:学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份,还可以再多一些),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生如果没有亲身参与操作,就缺乏情感空间感觉的体验,而且这部分又是小学阶段立体图形的教学难点,学生得不到充分的思考空间,也不利于教师营造思考的环境,不便于学生思考如何利用已知图形体积和教学思想去解决这一问题。学生缺乏行为、认知的投入和积极的情感投入,所以,课堂效果差就可想而知了。

  三、 练习时,要形式多样,层层递进

  例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。在巩固练习中,只要从这五种类型去考虑,做到面面俱到,逐层深入,由易到难,学生才能真正掌握好计算圆柱体积的方法。练习方式可以是填空、选择、判断、看图计算、应用题等。达到掌握。

圆柱教学反思15

  我今天执教的内容是《圆柱的表面积》,圆柱的表面积,重点在于进行推导圆柱的侧面积计算公式,圆柱的表面积计算公式。在本节课的教学中,我从始至终贯穿着生本理念,以教学内容问题化为抓手,体现在教学中以学生小组活动为主体,教师为主导,训练思维为主线这样的原则,让学生在交流中学,在玩中学中课后,听取了孙主任和王主任的评课,又联系课堂教学,我进行了深刻地反思。

  一、小组合作学习的组织有序

  这节课,我以“圆柱的侧面积计算公式”和“圆柱的表面积计算公式”问题进行教学。整节课,组织学生围绕这两个核心问题进行交流、讨论,汇报和交流。但合作学习小组,每位同学都参与进行学习活动,特别是个别差生,在优秀同学的指导下倾听有进步。还有教师在小组合作学习当中,加入学习小组,指导和帮助学习小组进行学习。

  二、学生操作的缺失

  整节课的基础应该是建立在学生动手操作的基础之上,再进行观察发现讨论交流问题,但由于课前布置的小练习已经做过。缺失了在课堂上操作展示这一块,直接进行讨论,造成个别中等和偏下的学生,没有和实例结合,造成理解思维困难。另外,在教学例3时,可以做一个模型帮助学生进行理解。

  三、教师指导还需到位

  由于这节课,整合学校课题,教学内容问题化,我选择进行小组合作学习,但教师,如何组织学生进行学生,面对学生交流的答案的不确定性,如何引导组织学生进行解决,给我们提出了更高的要求,所以在课堂教学中,一些事先没有预计到的情况出现时,没有很好的去解决,造成了学生学习当中的疑惑。这也给教师提出了更高的要求。另外,在小组合作学习中,作为教师,又应该如何去指导学生展开学习,都是我们需要注意的地方。