高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

简便计算教学反思范文

更新时间:2023-08-02 23:34:01 来源:高考在线

  简便计算教学反思1

  第三单元简便计算已经学完了,说起这单元的内容,可以用千变万化这个词来形容。简便计算,目的在于使用各种运算定律,使复杂的计算变得简单,从而提高计算速度和正确率。正是应该使其简单化的定律,却变成了同学们为之头疼的难题。

  在以往教过的学生中,也不乏这样的同学存在,他们对乘法结合律和乘法分配律分辨不清,往往在做题时混在一起使用。比如88×125,这道题可以用两种方法进行简便运算。把88分成80+8,接下来就采用乘法分配律。把88分成8×11,那就必须用乘法结合律,而他们明明分成和的形式,反倒用乘法结合律去做。就是这样一个并不难的题,却把同学们绕得晕头转向。我时常在想,是他们没有彻底理解乘法结合律和乘法分配律吗?如若这样,还得单独对他们进行辅导。除此以外,千变万化的题型,也让刚刚接触这些定律的孩子们张冠李戴,或许是初次接触这么多的定律,或许是还没有找到做题的窍门,无论什么原因,只要经过刻苦努力,就一定有所收获。

  这部分的学习纵然是复杂的,但复杂中也会有规律可循,正如25×4、125×8,诸如这类能够凑整的数相乘或相加,正好运用到定律当中去,只要有25、125的出现,就去找它们的伙伴4和8,如此就能使复杂的计算简单化。我们学习这些定律,不但要掌握基本变化形式,更要灵活运用,还需要反复练习,这样才能提高计算速度和正确率。

  简便计算教学反思2

  分数乘法简便计算,是学生学习了分数加减法混合运算,整数、小数的简便计算的基础上进行学习的,然而,原以为学生已学过了整数和小数的简便运算,分数乘法简便运算又只应用乘法交换律、结合律和分配律,学生掌握肯定不错。事实证明上课效果还不错,可是作业中错误率极高。

  回顾了这节课的教学,整节课通过学生预习反馈,自主举例验证,尝试解决,交流讨论,自主总结等方法,发展学生的自主学习解决问题能力。却忽略了让学生理解知识这个最根本的教学目标。问题主要有以下三种:

  一是混合运算和简便计算题混淆,乱用简便运算。

  二是分配律用错的最多,原先的整数、小数利用乘法分配率进行简便计算就是简便计算的难点,碰到分数出错率就更多了。

  三是分数加减法混合运算与分数乘法计算混淆。

  针对这些现象我采取了以下措施:

  一引导学生回顾分数乘法和加减法的意义,理解各自的意义;

  二联系分数乘法和加减法各自的计算方法,并采取针对性练习;

  三复习整数、小数的与之相关的简便运算,并对常见的分数乘法简便运算的题型予以分类整理,辅之对应练习;

  四是加强审题的训练,让学生学会判断。

  五是加强对比练习,认真分析哪些可以简便,哪些不能简便。

  其实最主要还是抓班级里学习有困难的学生,因为这些错误类型几乎都是由他们所创。

  简便计算教学反思3

  《运算定律与简便计算》教学反思二人教版小学数学四年级下册第三单元《运算定律与简便计算》,教材安排的顺序是加法运算定律---乘法运算定律---简便计算。这样安排,虽然可以按四则运算进行归类,但是对运算定律的类比推理不利。教学时,可以根据运算定律的类比进行安排教学内容,以促进教学效果的更加有效。

  一、调整教材顺序,促进有效教学

  乘法交换律与加法交换律有着相似之处,都是交换数的位置进行运算,结果不变。乘法的结合律的教学可以与加法的结合律的教学安排在共一课时。

  学生通过具体事例的举例说明,得出a+b=b+a,再通过讨论得出交换两个加数的位置,和不变,这叫加法交换律。然后再安排教学乘法交换律,让学生通过举例说明,得出ab=ba,再通过对加法交换律概念的类比,推理出交换两个因数的位置,积不变,这叫做乘法交换律。再以同一课时或者前后课时,安排教学加法结合律与乘法结合律,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出先把前两个数相加,或后两个数相加,和不变这叫做加法结合律。教学乘法结合律时,再通过具体事例得出abc=a(bc),再对加法结合律的概念的类比推理,得出先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律。

  二、设计对比练习,促进有效教学

  在新知识还没有完全掌握的情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的障碍中解脱出来。

  学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。

  如,463+82+18,463-82-18,463-82+18

  9600254 9600254 9600254

  三、进行逆向训练,促进有效教学

  逆向运用

  加法结合律:346+(54+189)=346+54+189

  乘法结合律:8(125982)=8125982

  乘法分配律:8975+8925=89(75+25)

  减法的性质:894-(94+75)=894-94-75

  连除的简便:350(72)=35072

  逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a(bc)=abc的运用在有帮助。因此逆向运用的训练,很有必要。

  简便计算教学反思4

  这节课的内容是两数相乘的`两种简便计算,一种是通过将其中一个数转变为两个数相乘的形式使得运算简单,这是本节课的重点;另一种是通过将其中一个数转变为两个数相除的形式是的计算简便,这是学生理解起来的一个难点。而将哪个数变,变为哪种形式,又变为哪两个数合适是本节课的重点加难点。

  在教学过程中,与事先料想的完全一样,学生对于两数相乘替换一数理解起来没有问题,对于两数相除的形式就不太理解。连在班级中很突出的学生也不能回答到点子上,需要老师加以引导,但是对于其作用都能理解,这一点还是很不错的。

  另外,对于两数相乘的简便计算有多种,由于先前学习的乘法分配律,学生大多更习惯于将其中一数转化为两数相加的形式,其次是两数相乘的形式。在巩固练习环节中学生基本上没有用两数相除的形式。

  在巩固练习时,对学生的要求是比一比谁的算法数量更多更简单,学生对于这种带着比赛性质的活动明显更加热衷,课堂氛围更加活跃,许多平时不太爱表现自己的学生也能够踊跃地举手发言,这是一个很好的启发,在以后的教学过程中,可以尽量多的采用这种形式调动学生的积极性。