高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

高一数学教学计划范文集合10篇

更新时间:2023-08-09 21:54:27 来源:高考在线

高一数学教学计划 篇1

  本学期担任高一x1、x2两班的数学教学工作,两班学生共有xx人,初中的基础参差不齐,但两个班的学生整体水平较高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。

  一、教学目标.

  (一)情意目标

  (1)通过分析问题的方法的教学,培养学生的学习的兴趣。

  (2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

  (3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验"发现--挫折--矛盾--顿悟--新的发现"这一科学发现历程法。

  (二)能力要求

  1、培养学生记忆能力。

  (1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力,工作计划《高一数学上学期教学工作计划》。

  2、培养学生的运算能力。

  (1)通过概率的训练,培养学生的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

  (3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的渗透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

  3、培养学生的思维能力。

  (1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。

  (2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。

  (3)通过不等式、函数的引伸、推广,培养学生的创造性思维。

  (4)加强知识的横向联系,培养学生的数形结合的能力。

  (5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

  (三)知识目标

  1.集合、简易逻辑

  (1)理解集合、子集、补订、交集、交集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.

  (2)理解逻辑联结词"或"、"且"、"非"的含义.理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.

  (3)掌握一元二次不等式、绝对值不等式的解法。

  2.函数

  (1)了解映射的概念,理解函数的概念.

  (2)了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.

  (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.

  (4)理解分数指数幂的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质.

  (5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.

  (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.

  3.数列

  (1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

  (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.

  (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.

  三、教学重点

  1、集合、子集、补集、交集、并集.一元二次不等式的解法

  四种命题.充分条件和必要条件.

  2.映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用.

  3.等差数列及其通项公式.等差数列前n项和公式.

  等比数列及其通项公式.等比数列前n项和公式.

  四、教学难点

  1.四种命题.充分条件和必要条件

  2.反函数、指数函数、对数函数

  3.等差、等比数列的性质

  五、工作措施.

  1、抓好课堂教学,提高教学效益。

  课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。

  (1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。

  (2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过"知识的产生,发展",逐步形成知识体系;通过"知识质疑、展活"迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

  2、加强课外辅导,提高竞争能力。

  课外辅导是课堂的有力补充,是提高数学成绩的有力手段。

  (1)加强数学数学竞赛的指导,提高学习兴趣。

  (2)加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一城楼。

  (2)、加强对边缘生的辅导。边缘生是一个班级教学成败的关键,因此,我将下大力气辅导边缘生,通过个别加集体的方法,并定时单独测试,面批面改,从而使他们的数学成绩有质的飞跃。

  3、搞好单元考试、阶段性考试的分析。

  学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解。

  六、目标承诺

  1、及格率不低于98%。

  2、人平比年级平均高15分以上。

高一数学教学计划 篇2

  一、基本情况

  高一计算机1323班共有学生55人,其中男生42人,女生13人。高一新生刚进入高中,学习环境新,好奇心强.但是普遍学习习惯不好,数学基础较差,学习兴趣不浓.所以工作的重心在于提高学生对数学科的兴趣,以及在补足初中知识漏洞的前提下,进一步的夯实学生基础.

  二、指导思想

  全面提高学生的科学文化素养,围着课堂教学这个中心,更新教育观念,进一步提高教学水平,培养学生分析问题解决问题的能力,同时扎扎实实抓好基础知识,注意学生习惯的培养,为三年后高考打下坚实的基础。

  三、工作任务和措施

  任务:基础模块第一章至第四章

  第一章集合(9月份

  第二章不等式(10月份

  第三章函数(11月份

  第四章指数函数与对数函数(12月份-1月份

  措施:

  1.夯实三基

  知识、技能和能力三者关系是互相依存、互相促进的整体,能力是在知识的教学和技能的培训中形成的,通过数学思想的形成和数学方法的掌握,能力才得到培养和发展,同时,能力的提高又会对知识的理解和掌握起促进作用。因此,在教学中应注意:

  A.教学面向全体学生。

  B.重视概念的归纳、规律的总结、技能的训练。

  C.重视知识的产生、发展过程。

  D.加强知识过关检测,做好查漏补缺工作。

  2.优化课堂教学结构

  A.精心设计课堂教学:

  B.课堂练习典型化;

  C.教学语言精练化

  D.板书规范化。

  3.加强学习方法指导:

  A.指导学生看书,培养学生主动学习的习惯。

  B.指导学生整理知识,总结解题规律,归纳典型例题解法及一题多解与多题一解。

  4.加强学风建设与学习习惯的培养。

  适当安排作业,认真检查督促,加强优生和后进生的辅导,对学生的作业尽量做到面批。

  四、各章节授课具体时间安排:

  (基础模块第一章集合(约12课时

  (1理解集合、元素及其关系,掌握集合的表示法。

  (2掌握集合之间的关系(子集、真子集、相等。

  (3理解集合的运算(交、并、补。

  (4了解充要条件。

  (基础模块第二章不等式(约12课时

  (1理解不等式的基本性质。

  (2掌握区间的概念。高一上数学教学计划高一上数学教学计划。

  (3掌握一元二次不等式的解法。

  基础模块)第三章函数(约20课时

  (1理解函数的概念和函数的三种表示法。

  (2理解函数的单调性与奇偶性。

  (3能运用函数的知识解决有关实际问题。

  (基础模块第四章指数函数与对数函数(约20课时

  (1理解有理指数幂,掌握实数指数幂及其运算法则,掌握利用计算器进行幂的`计算方法。

  (2了解幂函数的概念及其简单性质。

  (3理解指数函数的概念、图像及性质。

  (4理解对数的概念(含常用对数、自然对数及积、商、幂的对数,掌握利用计算器求对数值的方法。

  (5理解对数函数的概念、图像及性质。

  (6能运用指数函数与对数函数的知识解决有关实际问题。

高一数学教学计划 篇3

  教学目标

  1通过对幂函数概念的学习以及对幂函数图象和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。

  2使学生理解并掌握幂函数的图象与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。

  3培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。

  教学重点、难点

  重点:幂函数的性质及运用

  难点:幂函数图象和性质的发现过程

  教学方法:问题探究法 教具:多媒体

  教学过程

  一、创设情景,引入新课

  问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?

  (总结:根据函数的定义可知,这里p是w的函数)

  问题2:如果正方形的边长为a,那么正方形的面积 ,这里S是a的函数。 问题3:如果正方体的边长为a,那么正方体的体积 ,这里V是a的函数。 问题4:如果正方形场地面积为S,那么正方形的边长 ,这里a是S的函数 问题5:如果某人 s内骑车行进了 km,那么他骑车的速度 ,这里v是t的函数。

  以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量) 这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

  二、新课讲解

  由学生讨论,(教师可提示p=w可看成p=w1)总结,即可得出:p=w, s=a2, a=s , v=t-1都是自变量的若干次幂的形式。

  教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数。

  幂函数的定义:一般地,我们把形如 的函数称为幂函数(power function),其中 是自变量, 是常数。 1幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念) 结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别: 对幂函数来说,底数是自变量,指数是常数 对指数函数来说,指数是自变量,底数是常数 例1判别下列函数中有几个幂函数?

  ① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由学生独立思考、回答)

  2幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?

  (学生讨论,教师引导。学生回答。)

  3幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域?

  (学生小组讨论,得到结论。引导学生举例研究。结论:幂指数 不同,定义域并不完全相同,应区别对待。)教师指出:幂函数y=xn中,当n=0时,其表达式y=x0=1;定义域为(-∞,0)U(0,+∞),特别强调,当x为任何非零实数时,函数的值均为1,图象是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外。)

  例2写出下列函数的定义域,并指出它们的奇偶性:①y=x ②y= ③y=x ④y=x

  (学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。)

  4上述函数①y=x ②y= ③y=x ④y=x 的单调性如何?如何判断?

  (学生思考,引导作图可得。并加上y=x 和y=x-1图象)接下来, 在同一坐标系中学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示。见后附图1

  让学生观察图象,看单调性、以及还有哪些共同点?(学生思考,回答。教师注意学生叙述的严密性。)

  教师总评:幂函数的性质

  (1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1),

  (2)如果a>0,则幂函数的图象通过原点,并在区间[0,+∞)上是增函数,

  (3)如果a<0,则幂函数在(0,+∞)上是减函数,在第一区间内,当x从右边趋向于原点时,图象在y轴右方无限地趋近y轴;当x趋向于+∞,图象在x轴上方无限地趋近x轴。

  5通过观察例1,在幂函数y=xa中,当a是(1)正偶数、(2)正奇数时,这一类函数有哪种性质?

  学生思考,教师讲评:(1)在幂函数y=xa中,当a是正偶数时,函数都是偶函数,在第一象限内是增函数。(2)在幂函数y=xa中,当a是正奇数时,函数都是奇函数,在第一象限内是增函数。

  例3巩固练习 写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x ②y=x ③y=x 。

  例4简单应用1:比较下列各组中两个值的大小,并说明理由:

  ①0.75 ,0.76 ;

  ②(-0.95) ,(-0.96) ;

  ③0.23 ,0.24 ;

  ④0.31 ,0.31

  例5简单应用2:幂函数y=(m -3m-3)x 在区间 上是减函数,求m的值。

  例6简单应用2:

  已知(a+1)<(3-2a) ,试求a的取值范围。

  课堂小结

  今天的学习内容和方法有哪些?你有哪些收获和经验?

  1、 幂函数的概念及其指数函数表达式的区别 2、 常见幂函数的图象和幂函数的性质。

布置作业:

  课本p.73 2、3、4、思考5

高一数学教学计划 篇4

  一、指导思想

  准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法.针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础.

  二、高一上册数学教学教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承、借签、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有如下特点:

  1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情.

  2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神.

  3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比、化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神.

  4.“时代性”与“应用性”:以具有时代感和现实感的素材创设情境,加强数学活动,发展应用意识.

  三、高一上册数学教学教法分析:

  1.选取与内容密切相关的、典型的、丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的.

  2.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式.

  3.在教学中强调类比、化归等数学思想方法,尽可能养成其逻辑思维的习惯.

  四、学情分析

  高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着.他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长.面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望.我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡.从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法.

  五、高一上册数学教学教学措施:

  1、激发学生的学习兴趣.由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步.

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考.

高一数学教学计划 篇5

  教学分析

  课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.

  值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与?的区别.

  三维目标

  1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.

  2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.

  重点难点

  教学重点:理解集合间包含与相等的含义.

  教学难点:理解空集的含义.

  课时安排

  1课时

  教学过程

  导入新课

  思路1.实数有相等、大小关系,如5=5,5<7 5="">3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)

  欲知谁正确,让我们一起来观察、研探.

  思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R.

  类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)?;(3)∈)

  推进新课

  提出问题

  (1)观察下面几个例子:

  ①A={1,2,3},B={1,2,3,4,5};

  ②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;

  ③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};

  ④E={2,4,6},F={6,4,2}.

  你能发现两个集合间有什么关系吗?

  (2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?

  (3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?

  (4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?

  (5)试用Venn图表示例子①中集合A和集合B.

  (6)已知A?B,试用Venn图表示集合A和B的关系.

  (7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?

  (8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?

  (9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?

  活动:教师从以下方面引导学生:

  (1)观察两个集合间元素的特点.

  (2)从它们含有的元素间的关系来考虑.规定:如果A B,但存在x∈B,且x A,我们称集合A是集合B的真子集,记作A B(或B A).

  (3)实数中的“≤”类比集合中的 .

  (4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.

  (5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.

  (6)分类讨论:当A B时,A B或A=B.

  (7)方程x2+1=0没有实数解.

  (8)空集记为 ,并规定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).

  (9)类比子集.

  讨论结果:

  (1)①集合A中的元素都在集合B中;

  ②集合A中的元素都在集合B中;

  ③集合C中的元素都在集合D中;

  ④集合E中的元素都在集合F中.

  可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.

  (2)例子①中A B,但有一个元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.

  (3)若A B,且B A,则A=B.

  (4)可以把集合中元素写在一个封闭曲线的内部来表示集合.

  (5)如图1121所示表示集合A,如图1122所示表示集合B.

  图1-1-2-1 图1-1-2-2

  (6)如图1-1-2-3和图1-1-2-4所示.

  图1-1-2-3 图1-1-2-4

  (7)不能.因为方程x2+1=0没有实数解.

  (8)空集.

高一数学教学计划 篇6

  本节课的教学内容,是指数函数的概念、性质及其简单应用。教学重点是指数函数的图像与性质。

  I这是指数函数在本章的位置。

  指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数。它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践。指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础。因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程。

  指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义。

  Ⅱ.教学目标设置

  1。学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念。

  2。学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小。

  3。学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法。

  4。在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力。

  Ⅲ.学生学情分析

  授课班级学生为南京师大附中实验班学生。

  1。学生已有认知基础

  学生已经学习了函数的概念、图象与性质,对函数有了初步的认识。学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力。学生已有研究一次函数、二次函数等初等函数的直接经验。学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯。

  2。达成目标所需要的认知基础

  学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力。

  3。难点及突破策略

  难点:1。 对研究函数的一般方法的认识。

  2。 自主选择底数不当导致归纳所得结论片面。

  突破策略:

  1。教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段。

  2。组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思。

  3。对猜想进行适当地证明或说明,合情推理与演绎推理相结合。

  Ⅳ.教学策略设计

  根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式。通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段。

  学生的自主学习,具体落实在三个环节:

  (1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念。

  (2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升。

  (3)性质应用阶段,学生自主举例说明指数函数性质的应用。

  研究函数的性质,可以从形和数两个方面展开。从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明。

  Ⅴ.教学过程设计

  1。创设情境建构概念

  师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系。你能用函数的观点分析下面的例子吗?

  师:大家知道细胞分裂的规律吗?(出示情境问题)

  [情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?

  [情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%。如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?

  [师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0。84x。

  师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?

  〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?

  [设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系。引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示。初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构。指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0。a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义。为了使指数函数与对数函数能构成反函数,规定a≠1。此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”。

  [师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax。

  [教学预设]学生能举出具体的例子——y=3x,y=0。5x…。如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现。进而提出这类函数一般形式y=ax。

  Ⅵ.教后反思回顾

  一、对于指数函数概念的认识

  指数函数是一种函数模型,其基本特征是自变量在指数位置。底数取值范围有规定,使得这一模型形式简单又不失本质。不必纠结于“y=22x是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想。

  二、对于培养学生思维习惯的考虑

  在学生自主探索的过程中,教师应注意培养学生良好的思维习惯。实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯。对所归纳的指数函数的性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明。学生不仅学到了数学知识,也初步体验了研究问题的基本方法。

  三、关于设计定位的反思

  本节课的教学设计,力图体现因材施教原则。不同的学情下,教师应采用不同的教学策略。如果学生基础相对薄弱,问题的提出可以分层次进行。另外,注意通过“你是怎么想的?”“你同意他的意见吗?为什么”等问话形式,促使学生暴露思维过程。

高一数学教学计划 篇7

  一、指导思想

  准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

  二、教学建议

  1、深入钻研教材。以教材,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

  2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

  3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

  4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

  5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。

  三、教学内容

  第一章集合与函数概念

  1.通过实例,了解集合的含义,体会元素与集合的属于关系。

  2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

  3.理解集合之间包含与相等的含义,能识别给定集合的子集。

  4.在具体情境中,了解全集与空集的含义。

  5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

  6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

  7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

  8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

  9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

  10.通过具体实例,了解简单的分段函数,并能简单应用。

  11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

  12.学会运用函数图象理解和研究函数的性质。

  课时分配(14课时)

  第二章基本初等函数(I)

  1.通过具体实例,了解指数函数模型的实际背景。

  2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

  3.理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

  4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。

  5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。

  6.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。

  7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。

  课时分配(15课时)

  第三章函数的应用

  1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

  根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

  2.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

  3.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

  4.根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。

  课时分配(8课时)

3.1.1

方程的根与函数的零点

约1课时

10月25日

3.1.2

用二分法求方程的近似解

约2课时

10月26日27日

3.2.1

几类不同增长的函数模型

约2课时

10月30日

|

11月3日

3.2.2

函数模型的应用实例

约2课时

小结

约1课时

  考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。

高一数学教学计划 篇8

  一、指导思想:

  使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教学目标:

  (一)情意目标

  (1)通过分析问题的方法的教学,培养学生的学习的兴趣。

  (2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组 研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

  (二)能力要求 培养学生记忆能力。

  (1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。

  2、培养学生的运算能力。

  (1)通过概率的训练,培养学生的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

  (3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的渗透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

高一数学教学计划 篇9

  一、上学期教学回顾

  高一共四个教学班,共计160余人。杨文国带高

  一(一)班,高一(二)班;张忠杰带高一(三)班和高一(四)班。其中各班期末八校联考的成绩分别为:50.6分,32.8分,27.2分,34.5分,总平36.9分。学期中途因张忠杰离开学校导致频繁更换老师,

  (三)班、(四)班的成绩因而受到影响。期末由王山任(三)班、(四)班的数学老师。

  上学期工作在学生学习的落实环节上做得不太扎实,这将是本学期重点改进的地方。

  二、本学期的措施及打算

  1.一周学习早知道。明确目标更能确定努力的方向。为了让学生学习更有目的性,有效性和积极性,每周第一节课给出一周的教学进度,学习目标和过关要求。不仅老师要做到对所教内容清楚明了,也要让学生对所学内容做到每周学习目标清晰化。

  2.落实“每周测试”过关制。周测内容与一周学习目标及一周的讲授内容紧密相连。未尽力而又没有过关的学生将按事先说明的措施给予处罚。以便让学生重视课堂学习,重视平时作业,重视一周的学习过程。做到让学生每周学习过程精细化。

  3.根据学生学力状况进行分层次的培优补差。

  三、教学进度安排

高一数学教学计划 篇10

  一 设计思想:

  函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。

  二 教学内容分析:

  本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94-95页的第三章第一课时3.1.1方程的根与函数的的零点。

  本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.渗透“方程与函数”思想。

  总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。

  三 教学目标分析:

  知识与技能:

  1.结合方程根的几何意义,理解函数零点的定义;

  2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

  3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间 的方法

  情感、态度与价值观:

  1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

  2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯;

  3.使学生感受学习、探索发现的乐趣与成功感

  教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。

  教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。

  四 教学准备

  导学案,自主探究,合作学习,电子交互白板。

  五 教学过程设计:

  (一)、问题引人:

  请同学们思考这个问题。用屏幕显示判断下列方程是否有实根,有几个实根?

  (1)

  ;(2)

  ?

  学生活动:回答,思考解法。

  教师活动:第二个方程我们不会解怎么办?你是如何思考的?有什么想法?我们可以考虑将复杂问题简单化,将未知问题已知化,通过对第一个问题的研究,进而来解决第二个问题。对于第一个问题大家都习惯性地用代数的方法去解决,我们应该打破思维定势,走出自己给自己画定的牢笼!这样我们先把所依赖的拐杖丢掉,假如第一个方程你不会解,也不会应用判别式,你要怎样判断其实根个数呢?

  学生活动:思考作答。

  设计意图:通过设疑,让学生对高次方程的根产生好奇。

  (二)、概念形成:

  预习展示1:

  你能通过观察二次方程的根及相应的二次函数图象,找出方程的根,图象与轴交点的坐标以及函数零点的关系吗?

  学生活动:观察图像,思考作答。

  教师活动:我们来认真地对比一下。用投影展示学生填写表格

一元二次方程

方程的根

二次函数

函数的图象

(简图)

图象与轴交点的坐标

函数的零点

? ???
? ???
? ???

  问题1:你能通过观察二次方程的根及相应的二次函数图象,找出方程的根,图象与

  轴交点的坐标以及函数零点的关系吗?

  学生活动:得到方程的实数根应该是函数图象与x轴交点的横坐标的结论。

  教师活动:我们就把使方程 成立的实数x称做函数的零点.(引出零点的概念)

  根据零点概念,提出问题,零点是点吗?零点与函数方程的根有何关系?

  学生活动:经过观察表格,得出(请学生总结)

  1)概念:函数的零点并不是“点”,它不是以坐标的形式出现,而是实数。例如函数的零点为x=-1,3

  2)函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.

  3)方程有实数根函数的图象与轴有交点函数有零点。

  教师活动:引导学生仔细体会上述结论。

  再提出问题:如何并根据函数零点的意义求零点?

  学生活动:可以解方程而得到(代数法);

  可以利用函数的图象找出零点.(几何法).

  设计意图:由学生最熟悉的二次方程和二次函数出发,发现一般规律,并尝试的去总结零点,根与交点三者的关系。

  (三)、探究性质:

  (五)、探索研究(可根据时间和学生对知识的接受程度适当调整)

  讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?

  [师生互动]

  师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。

  生:分组讨论,各抒己见。在探究学习中得到数学能力的提高

  第五阶段设计意图:

  一是为用二分法求方程的近似解做准备

  二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。

  (六)、课堂小结:

  零点概念

  零点存在性的判断

  零点存在性定理的应用注意点:零点个数判断以及方程根所在区间

  (七)、巩固练习(略)