高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

六年级数学《正比例》教学设计范文(精选五篇)

更新时间:2023-08-13 13:47:54 来源:高考在线

  六年级数学《正比例》教学设计1

  【教学目标】

  1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2、培养学生概括能力和分析判断能力。

  3、培养学生用发展变化的观点来分析问题的能力。

  【教学重难点】

  重点:

  成正比例的量的特征及其断方法。

  难点:

  理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。

  【教学过程】

  一、四顾旧知,复习铺垫

  商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?

  学生独立完成后师提问:你们是怎样比较的?

  生:我先求出每种袜子的单价,再进行比较。

  师:你是根据哪个数量关系式进行计算的?

  生:因为总价=单价×数量,所以单价=总价÷数量。

  师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。(板书:正比例)

  二、引导探索,学习新知

  1、教学例1,学习正比例的意义。

  (1)结合情境图,观察表中的数据,认识两种相关联的量。师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。全班交流。

  (2)认识相关联的量。明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。

  2、计算表中的数据,理解正比例的意义。

  (1)计算相应的总价与数量的比值,看看有什么规律。学生计算后汇报:===…=3、5,每一组数据的比值一定。

  (2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)

  (3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。

  (4)明确成正比例的量及正比例关系的意义。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:

  3、列举并讨论成正比例的量。

  (1)生活中还有哪些成正比例的量?预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。

  (2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?

  两种量中相对应的两个数的比值一定,这是关键。

  4、认识正比例图象。(课件出示例1的表格及正比例图象)

  (1)观察表格和图象,你发现了什么?

  (2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?

  无论怎样延长,得到的都是直线。

  (3)从正比例图象中,你知道了什么?

  生1:可以由一个量的值直接找到对应的另一个量的值。

  生2:可以直观地看到成正比例的量的变化情况。

  (4)利用正比例图象解决问题。

  不计算,根据图象判断,如果买9m彩带,总价是多少?49元能买多少米彩带?

  小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?预设生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。

  三、课堂练习:

  1、P46“做一做”

  2、练习九第1、3~7题

  六年级数学《正比例》教学设计2

  教学内容:

  教科书第62—63页的例1、“试一试”和“练一练”,第66页练习十三的第1—3题。

  教学目标:

  1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重难点:

  理解相关联的两个量及正比例的意义,并能正确判断两种量是否成正比例

  学情分析

  1、学生在学习本单元之前已经学习了比和比例的有关知识,会解决按比例分配的简单数学问题。

  2、有一些朴素的正、反比例概念。学生在中已经积累了一些这方面的经验,比如坐车时间越长,行走的距离就越远等。

  多媒体运用:ppt课件

  教学过程:

  一、教学例1

  1、谈话引出例1的表格,让学生说一说表中列出了哪两种量。

  2、引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

  可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:行驶的时间扩大,路程也随着扩大;行驶的时间缩小,路程也随着缩小。

  小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。

  3、引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。

  学生可能会从不同的角度去寻找规律。

  教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。

  如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。

  4、根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的规律能不能用一个式子来表示?

  根据学生的回答,教师板书关系式:路程时间=速度(一定)

  5、教师对两种量之间的关系作具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定,也就是速度一定时,行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

  (板书:路程和时间成正比例)

  二、教学“试一试”

  1、要求学生根据表中的已知条件先把表格填写完整。

  2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。

  3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。

  三、抽象表达正比例的意义

  1、引导学生观察上面的两个例子,说说它们有什么共同点。

  2、启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

  根据学生的回答,板书关系式。

  四、巩固练习

  1、完成第63页的“练一练”。

  先让学生独立思考并作出判断,再要求说明判断理由。

  2、做练习十三第1~3题。

  第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。

  第2题先让学生独立进行判断,再指名说判断的理由。

  第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。

  填好表格后,组织学生讨论,明确:只有当两种相关联的量的`比值一定时,它们才能成正比例。

  五、全课小结

  这节课你学会了什么?通过这节课的学习,你还有哪些收获?

  六年级数学《正比例》教学设计3

  教学要求:

  使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。

  进一步提高解决简单实际问题的能力。

  教学过程:

  提出本课复习题

  基本概念的复习

  什么叫两种相关联的量?

  下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?

  什么样的两种量成正比例关系?什么样的两种量成反比例关系?

  成正比例关系的量与成反比例关系的量有什么异同点?

  应用练习

  完成教材97页的“做一做”。

  第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。

  巩固练习

  完成教材99页第6~7题。

  全课总结(略)

  教学目标:

  使学生进上步理解和掌握比和比例的意义与性质。

  区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。

  教学过程:

  讲述本课复习课题并板书

  基本概念的复习

  比和比例的意义与性质。

  什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?

  比和分数、除法有什么联系?

  说说比的基本性质的比例的基本性质?

  比的基本性质与比例的基本性质各有什么用处?

  看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?

  完成教材95的“做一做”。

  结合第3题让学生说说什么叫做解比例?根据是什么?

  示比值和化简比。

  独立完成教材96页上的题目。

  说说求比值与化简比的区别?

  (求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。

  看书中的表,总结方法。

  完成教材96页的“做一做”

  比例尺

  问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。

  2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?

  比例尺除写成数字化形式处,还可怎样表示?

  完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)

  练习巩固

  完成教材十九页第1~4题。

  全课总结(略)

  六年级数学《正比例》教学设计4

  一、教材分析

  【复习内容】

  教科书第12册第94页“整理与反思”和95—96页的“练习与实践”5—10

  【知识要点】

  1、正比例和反比例的区别与联系:

  相同点不同点

  特征关系式

  正比例两种相关联的量两种量中相对应的两个数的比的比值(也就是商)一定=k(一定)

  反比例两种量中相对应的两个数的积一定x×y=k(一定)

  与老教材相比,新教材进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。

  2、图上距离和实际距离的比,叫做这幅图的比例尺。

  图上距离:实际距离=比例尺或=比例尺

  【教学目标】

  1、使学生进一步认识成正比例和反比例的量,掌握两种量是否成比例、成什么比例的思考方法。

  2、使学生通过掌握判断两种相关联的量是否成正比例或反比例的方法,提高分析、判断的能力。

  3、使学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容之间的密切联系。认识成正比例和反比例的量,使学生感受正、反比例是描述数量关系及其变化规律的又一种有效的数学模型。

  二、教学建议

  复习正比例和反比例,重点是它们的意义。教材让学生回忆判断两种量是否成正比例或反比例的方法,重温正比例关系的特征是两种相关联变量的商保持一定,反比例关系的特征是两种相关联变量的积保持一定。再通过第7、8题的判断,进一步巩固正比例和反比例的概念。第9题复习正比例的图像,其中汽车行驶的路程和耗油量是否成正比例,要利用图像找出几组相对应的数,组成比并求出比值,根据正比例的意义进行判断。

  复习比例尺的知识仅编排一道题,利用平面图的比例尺和量出的图上距离,计算相应的实际距离。教学第10题要说说这幅平面图的比例尺和具体含义,从线段比例尺得出数值比例尺,回忆比例尺的意义和算法。要通过解题归纳求实际距离的方法及注意点,还要说说怎样求图上距离。

  三、知识链结

  1、正比例和反比例(教科书六下P62例1、例2、P63例3)

  2、比例尺(教科书六下P48例6、P49例7)

  四、教学过程

  (一)正比例和反比例的意义。

  1、教师提问:根据正比例和反比例的意义,我们怎样判断两种量是否成正比例或反比例关系?(小组讨论后,交流)

  2、小结:第一,这两种量是不是相互关联?其中一种量是否随着另一种量的变化而变化?第二,这两种量中每一组对应的数的比值(或积)是否一定。

  3、举出一些生活中成正比例或反比例量的例子,在小组里交流。

  例如:黄瓜的单价一定,数量和总价成正比例。因为,第一,数量和总价这两种量是相互关联的,其中一种量总价随着另一种量数量的变化而变化。第二,这两种量中每一组对应的数的比值都是单价。单价一定,所以这两种量是成正比例的量。

  (二)练一练

  1、下表中两种量成比例吗?为什么?

  加数122、51424

  加数1827、5166

  总吨数422610024、4

  余下吨数41259923、4

  因数35320

  因数159101、5

  学生说一说每张表中,第一,这两种量是不是相互关联?其中一种量是否随着另一种量的变化而变化?第二,这两种量中每一组对应的数的比值(或积)是否一定。再作出相应的判断

  2、完成教科书95页“练习与实践”

  第7题:让学生先独立做,再讲评。讲评时注意帮助学生解决困难。

  第8题:引导学生列举几组对应的数值再具体分析每组中两个数的关系后再判断。

  第9题:其中第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)第2小题让学生在教材提供的方格图上描点、连线,再引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。体会数形结合在解决问题方面的价值。

  (三)复习比例尺

  1、教师提问:什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)

  2、举例说说怎样求图上距离?怎样求实际距离。

  3、完成教科书95页“练习与实践”第10题。

  (四)评价小结:

  学了本课你对所学知识有什么新认识?还有什么问题?

  习题精编

  一、对号入座。

  1、在比例尺是1:4000000的地图上,图上距离1厘米表示实际距离()千米。也就是图上距离是实际距离的1(),实际距离是图上距离的()倍。

  2、一幅图的比例尺是,那么图上的1厘米表示实际距离();实际距离50千米在图上要画()厘米。把这个线段比例尺改写成数值比例尺是()。

  3、一种微型零件的长5毫米,画在图纸上长20厘米,这幅图的比例尺是()。

  4、判断下列各题中两种量是否成比例?成什么比例?

  (1)路程一定,车轮的周长和车轮滚动的圈数。( )

  六年级数学《正比例》教学设计5

  教学内容:

  苏教版六数下83—84页“整理与反思”和“练习与实践”1—6题。

  教材分析:

  教材第83页的“整理与反思”主要是复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求说说比的基本性质与分数的基本性质、商不变的规律有什么联系与区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变规律内在的一致性,有利于学生加深对比与分数、除法的理解,促进学生对数学知识的灵活运用。

  教学目标

  1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。

  2、运用比较的方法,有利于学生对所学知识的理解,促进学生对数学知识的灵活运用。

  3、能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

  教学重、难点重点:

  正确理解正比例、反比例的意义,运用比例的基本性质判断两个比能否组成比例。

  难点:

  运用比例的知识解决一些简单的实际问题。

  课前准备课件。

  教学流程设计意图

  一、比的知识:

  1、举例说说什么是比?什么是比的基本性质?

  2、说一说用比的知识可以解决哪些实际问题。

  3、完成教科书第83页“练习与实践”。

  (1)完成第一题:学生独立数出班上男女生人数,再完成此题。

  (2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。

  二、比和分数、除法的联系

  出示:a∶b=()÷()=(b≠0)

  1、先填空,再说说这样填的根据是什么?

  2、说说比的基本性质与分数的基本性质、商不变的规律的联系。

  3、练一练:

  (1)判断:比的前项和后项都乘或都除以相同的数,比值不变。()

  (2)填空:

  =()÷()=()∶()

  (填好后展示学生不同的结果。)

  三、比例的知识

  1、什么是比例?

  2、比和比例有什么关系?(小组讨论后交流)

  3、比例的基本性质是什么?

  4、比例的基本性质有什么作用?怎样解比例?

  5、练一练:完成教材第83页的“练习与实践”。

  (1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。

  估计后再算一算,来验证估计。

  (2)完成第3题:解比例,做好后选两题验算一下。

  四、完成教材第84页“练习与实践”。

  (1)完成第4题:先学生独立做最后交流,第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。

  (2)完成第5题:

  第一小题让学生独立得出:深色与浅色地砖铺地面积的

  比是20∶40,化简得1∶2。

  第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。

  (3)完成第6题。

  五、评价小结:

  学了本课你对所学知识有什么新认识?还有什么问题?

  通过让学生回忆比和比的基本性质,从而自然进入复习序列,从比到比例。

  沟通比、分数和除法的关系,为接下来比较比的基本性质、分数的基本性质、除法商不变的规律奠定基础。

  对比和比例进行比较,强化理解,进一步优化知识结构。

  复习解比例。

  应用比例分配知识解决实际问题。