高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

小学四年级数学下册《鸡兔同笼》教学设计范文(精选三篇)

更新时间:2023-08-15 23:51:33 来源:高考在线

  小学四年级数学下册《鸡兔同笼》教学设计1

  1.了解”鸡兔同笼”问题,感受中国古代数学问题的趣味性。

  2.尝试列表枚举、算术、方程等不同的方法解决“鸡兔同笼”问题,体验解决问题方法的多样性,提高解决实际问题的能力。

  3.通过自主探索、合作交流,培养合作意识和逻辑推理能力。

  4.体会数学问题在日常生活中的应用,进而体会数学的价值。

  学情分析

  “鸡兔同笼”题目是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”题目,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

  教材的编排有以下特点:

  1.教材首先通过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”题目,并通过小精灵的提问激发学生解答我国古代著名数学题目的爱好。

  2.注重体现解决“鸡兔同笼”题目的不同思路和方法。

  3.让学生进一步体会到这类题目在日常生活中的应用。

  教学重点:亲历列表、假设、方程等解题的过程,体会解决问题的一般策略。

  教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略解决生活中的实际问题。

  教学过程

  活动1【导入】激趣导入 引发思考

  导语:同学们,通过课前的游戏老师发现你们真是爱思考的孩子,那今天我们就带着思考一起走进《鸡兔同笼》,鸡和兔大家都很熟悉了,谁能用数学的语言说一说鸡和兔各有什么特点?瞧,两条腿的鸡和四条腿的兔相遇了,这时候有几个头,几条腿?如果一群鸡和兔关在同一个笼子里,我们要研究什么呢?看,问题来了。

  课件出示:笼子里有若干只鸡和兔,从上面数,有12个头;从下面数,有32条腿。鸡和兔各有几只?(全班齐读)

  活动2【活动】合作交流 预设生成

  (一)这个问题课前你们通过自学都有了自己的想法,现在请你们把自己研究的收获和小组的同学交流交流,等一下大胆地上台展示自己的研究成果。开始吧!(学生交流)

  (二)老师刚才听了你们的交流,老师发现同学们的思维真的很活跃,谁愿意第一个上台展示?掌声有请第一个小勇士上讲台给大家交流他解决问题的方法,大家要认真倾听,随时向这位同学提问。

  1.生:我是这样想的,假设鸡为0只,兔为12只的时候,腿数为48;当鸡的只数为1只,兔为11只的时候,腿为46,依次类推,当鸡为8只,兔为4只的时候,腿就刚好是32.这样都得出了鸡为8只,兔为4只。

  请同学们观察分析这些数据,你发现了什么?(鸡兔共12只;鸡的只数在逐一增多;兔的只数在逐一减少;腿的条数也在减少;鸡增加一只兔减少一只,腿数减少两条)追问:腿的条数是怎样减少的?谁的只数变化使腿数减少?反过来观察你有什么发现吗?(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2条。)

  (1)还有哪些同学与他的方法相同或类似?你们认为这种方法有什么特点?这位同学的这个方法按顺序一个一个列举下来,不容易遗漏,我们取个名字记住它吧!(板书:逐一列举)

  (2)还有一个同学也用了逐一列举法,为什么有的要用9次找到正确答案,有的只要5次呢?

  (3)说得真好,你还注意到腿的条数跟实际情况越接近,试的次数会越少,真是好样的。除了逐一列举的方法,还有其他方法吗?

  (4)取中列举和跳跃列举方法的同学汇报,说出是如何确定第一组数据的?计算验证后发现了什么问题?如何调整的?谁还有不同的调整策略?问:你们觉得这种方法怎么样?(简便、快捷)

  重点追问:计算验证后发现什麽,怎样想到用这种方法进行调整的?

  (三)回顾与交流

  回顾一下我们的解题思路和方法,首先我们根据已知信息进行尝试猜测,发现腿数不符合实际情况,我们这时要认真分析然后进行合理调整,这样才能更快找到正确答案。(板书:分析调整)你最喜欢那种列举方法?为什么?

  谢谢同学们还有其他的方法解决这道题吗?

  (四)继续交流分享

  2.生:我先假设全都是鸡,那么就有24条腿,比实际的腿少了32-24=8条。多的这8条腿就是由于我们把兔当作了鸡,每只兔鸡少算了2条腿,所以用8除以2就得到了兔的只数,兔是4只,鸡只有8只。

  师:大家听懂这个方法了吗?你有什么问题要提出来的?没关系,我们请12个小朋友充当小动物来演一演帮忙同学们理解一下这种方法。

  (学生表演,借助学生表演理解算术解法每一步的意思)

  师:如果假设全都兔呢?你们会解决吗?对手试试看。(学生动手试做,然后汇报)。

  3.生:我用的.是画图的方法。我们先画12个圆代表12个头,然后个头添上2条腿,就一共添了24条腿,这个时候鸡的腿数齐了,剩下8条腿的全是兔的腿了,每只兔子还差2条腿,所以再给每只兔子添上两条腿,这样就可以添4只兔子,所以有4只兔子,有8只鸡。

  生:我觉得这个方法和列举法一样,如果数目较多的时候,画图就麻烦了。

  师:这道题用画图的方法可行吗?

  生:数目简单的时候可行。

  师:这也就解决问题的一种策略,如果数目较多,我们可以把图画在心中,心中想怎么画就可以了。下面有请其他小组进行汇报。

  4.生:我们小组是用抬腿法来做的。我们先让每只动物抬起一条腿来,这样就还剩下了26-8=18条腿,我们再让每只动物再抬一次腿,这个时候就还剩下了18-8=10条腿了。这10条腿全都是兔子的了。所以兔子有5只,鸡有3只。

  师:这个方法就是古人的奇思妙想,你们也想到了,真好!有兴趣的同学课后可以看课本的阅读资料,也可以和同学们演一演,研究研究。

  小结过渡:古人的一道趣题引发了我们的思考,我们从不同角度,用不同方法进行研究都能解决这个趣题,这就是数学的魅力啊!孩子们,其实《鸡兔同笼》趣题早在1500年前就记载在孙子算经里头,作为我国古代留下来的文化遗产,后来还流传到了日本,那日本的《龟鹤问题》和我们学的有什么相似之处呢?

  活动3【练习】联系生活 建构模型

  同学们,生活中有没有类似鸡兔同笼这样的问题呢?我们走进生活一起去找一找吧!请看租船中的问题:

  全班一共有38人,共租了8条船,大船能坐6人,小船能坐4人,每条船都坐满了。大、小船各租了几条?(38人相当于鸡兔同笼的腿数,8条船相当于头数,大船坐6人相当于6条腿的怪兔,小船相当于4条腿的怪鸡)

  活动4【测试】实际应用 解决问题

  在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车摩托车各多少辆?

  尝试运用你喜欢的方法独立完成此题。

  就这道题而言,你认为它与鸡兔同笼问题有什么联系?不同之处呢?哪种方法解决最好?

  活动5【作业】生活拓展 谈谈收获

  结束语:孩子们,课上到这里,你还有什么疑问或想法吗?老师通过这节课和同学们的交流,觉得你们太棒了,你们通过课前自学,课上通过交流并分享了自己的研究成果,还用学到的方法解决了生活中的许多类似问题,相信同学们只要保持这种研究精神,一定能有更多的收获。谢谢同学们!

  小学四年级数学下册《鸡兔同笼》教学设计2

  教学目标:

  1 、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。

  2 、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。

  3 、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。

  教学重点:从不同的角度分析,掌握解题的策略与方法。

  教学流程:

  一、创设情境,明确目标

  1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5…)太少了?(50…)多了,(40…)少了(45…)差不多了,(46…)恭喜你,答对了,下课就由你发给同学们。

  2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的知识,还可以锻炼我们的思维。在我国古代就有许多有趣的数学名题,你们了解吗?今天,。老师就向你们推荐一种有趣的问题------鸡兔同笼。

  二、自主探索,合作交流

  1 出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”

  (1)你从中获取什么信息?……

  (2)请你们猜一猜将鸡、兔可能是几只?(……)

  (3)把你猜的过程给大家说一说

  (4)板书学生的过程

  鸡 1 2 3

  兔 4 3 2

  腿 18 16 14

  (4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)

  2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”

  (1)自己先想一想如何利用列表来解决?

  (2)小组内交流一下自己的想法。

  (3)独立完成列表。

  (4)汇报想法和过程

  小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。

  通过表格引导学生观察:发现了什么?(每多一只鸡,少一只兔子,相应减少2条腿,)

  小组2:跳跃式列表------假设鸡有1只,兔子有19只,那么就有78条腿,要比54条腿多的多,因此,兔子的只数也可能多了很多,但是鸡的只数可以不用一只一只依次递增,而是从猜一只到猜5只(或者其它几只),当腿的条数在50到60之间,(提出问题:兔子可能是几只?到底是谁估计的更加接近呢?)

  引导发现:这样就减少举例的次数。并通过数据的调整来优化解题策略。

  小组3:取中列表------假设鸡兔各有10只

  小组4:方程

  小组5;奥书班中学习过算术方法(让孩子清楚表达出自己的想法)

  三、适时反思,掌握策略(两题任选其一)

  “同学们,鸡兔同笼”

  1、观察三种列表的方法,比较异同?

  2、谈一谈;你们有什么感受?

  四、深化练习,拓展延伸

  1、课后练习1、2、3(比较不同-----答案是否唯一)

  2、通过今天的学习,有什么收获?

  小学四年级数学下册《鸡兔同笼》教学设计3

  【教学目标】

  1、知识与技能

  初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题。

  2、过程与方法

  通过画图分析、列表举例、假设计算等方法理解数量关系,体会数形结合的方便性,体验解决问题方法的多样化,提高解决实际问题的能力。

  3、情感、态度与价值观

  培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,受到多种数学思想方法的熏陶,进而让学生体会数学的价值。

  【教学重点】用画图法和列表法解决相关的实际问题。

  【教学难点】体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

  【教学准备】课件。

  【教学流程】

  (一)问题引入,揭示课题。

  师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有雉(野鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”

  问:这段话是什么意思?谁能说说?(生试说)

  师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。(板书课题:鸡兔同笼问题)

  (二)主动探究、合作交流、学习新知。

  师:说明为了研究方便,我们先将题目的条件做一个简化。

  (课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?

  师:同学们先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)

  学生初步交流,教师提炼:可以用画图法、列表法、假设的方法。

  师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。

  学生思考、分析、探索,接下来小组讨论、交流。

  小组活动充分后进入小组汇报、集体交流阶段。

  师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?

  学生汇报探究的方法和结论:

  1、 画图法:

  给每只动物先画上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。一次增加2条腿,一只鸡就变成了一只兔,要把10条画完,要把5只鸡变成兔。

  总结:画图的方法非常便于观察、非常容易理解。

  2、列表法:(展示学生所列表格)

  学生说明列表的方法及步骤:

  学生汇报:我们先假设有8只鸡这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。

  师:同学们的探索精神和方法都很好,都能用自己的方法成功地解决“鸡兔同笼问题”。不过上面的两种方法,老师还是觉得比较麻烦,又是画图,又是列表的,有没有更方便简洁的方法来解决这个问题?

  3、假设法:(随学生能否出现此种情况作为机动出示)

  教师引导:观察上面的表格我们发现。如果8只都是鸡,则一共只有16条腿这样就比26条腿少10条腿,这是因为实际每只兔子比每只鸡多2条腿。一共多了10条腿,于是兔就有10÷2=5(只),所以我们还可以这样去想:

  板书:

  方法一:假设8只都是鸡,那么兔有:

  (26-8×2)÷(4-2)=5(只)

  鸡有8-5=3(只)

  同样如果8只都是兔,则一共只有32条腿这样就比26条腿多6条腿,这是因为实际每只鸡比每只兔子少2条腿。一共多了6条腿,于是鸡就有6÷2=3(只),所以我们还可以这样去想:

  板书:方法二:假设8只都是兔,那么鸡有:

  (4×8-26)÷(4-2)=3(只)

  兔有8-3=5(只)

  小结方法:刚才我们用这么多的方法解决了鸡兔同笼问题,你最喜欢哪一种方法,说说你的理由。

  现在我们重新总结一下这些方法:数目比较小时,用画图和列表的方法比较快,数目比较大时,用假设法比较好。

  (三)解决实际问题、课堂延伸。

  1.尝试解答课前提出的古代《孙子算经》中记载的鸡兔同笼问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

  看看我国古人是怎么解这个题的。

  2、自行车和三轮车共10辆,总共有26个轮子。自行车和三轮车各有多少辆?

  (四)课堂小结:

  通过今天的学习,你有哪些收获?

  师总结:这节课,我们一起用画图法、列表法和假设法解决了我国古代著名的“鸡兔同笼”问题。其实在1500年以来,我们中国历代的数学家都在不断的研究和探索这个问题,也得出了许多的解决“鸡兔同笼”问题的方法,而且从中得到了很多的数学思想。希望同学们在今后的学习中,善于思考,善于发现,善于总结方法。