高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

分数除以整数教学设计

更新时间:2023-08-09 04:20:15 来源:高考在线

分数除以整数教学设计1

  教学目标:

  通过自主探究、合作交流,理解整数除以分数的计算方法。

  能正确计算整数除以分数,并能解决简单的数学问题。

  学生在学习活动中能进行观察、抽象、猜想、验证等数学活动,获得良好的学习情感。

  教学过程:

  一、引入课题。

  1.同学你,喜欢动物吗这节课我们就通过数学来了解几种动物的情况。古代有一种动物被称作人们的邮递员,知道它是谁吗鸽子每小时可飞多少千米呢

  2.有这样一组信息:

  出示:一只鸽子小时飞行12千米。1小时行多少千米

  你会用线段图表示条件吗

  求鸽子1小时飞行多少千米,算式怎么列

  这是整数除以分数(板书课题)

  二、探究新知。

  1、12÷怎样计算呢你能否根据线段图发现不同的解法呢

  学生可能有以下三种方法:

  ① 12÷=12÷0.2

  这是转化成整数除以小数进行计算。

  ② 12×5

  为什么乘5能在图中解释一下吗

  ③ 12÷=60

  2、12÷的结果是多少你是怎么想的

  学生可能会有:

  ①12÷和12×5都是求鸽子1小时飞行的路程,应该相等。

  ②12÷等于乘的倒数。

  提问:你怎么想到的

  从一个例子推想出来的结论,是否适用于所有的例子呢这时可称之为猜想。想证明猜想是正确的,你认为应该怎么办

  3、出示下面两题,请学生解答并说出思考过程。

  1.蜜蜂

  2.猫

  这两题的计算过程符合刚才的猜想吗能否说明猜想适用于所有整数除以分数的情况呢

  4、出示:

  一只蝴蝶小时可飞行( )千米,1小时可飞行多少千米

  你想知道四分之几小时飞行的千米数为什么

  补充小时可飞行24千米。

  算式怎么列怎样计算呢先独立思考,然后小组讨论。

  学生可能有:

  24×,24×3÷4,24××4,24÷3+24,24÷0.75

  如果24×是正确的,结果应是相同的,验证一下。

  这些算式之间有没有内在的联系呢能否转化成24×呢

  教师引导完成:

  5、猜想正确吗用不同的事例来证明猜想是非常了不起的办法,老师告诉你们,猜想是对的。在中学的学习中,同学们还会学习如何证明猜想。

  (若有化成除以小数的,提问:两种计算方法,哪种更好)

  计算整数除以分数,哪种方法最方便

  三、巩固练习

  ①4÷2/3=4×( ) 2÷1/5=2×( )

  ②p35.练一练1

  ③计算8÷2/3 10÷15/16

  四、解决问题

  苍蝇小时可飞4千米

  蝙蝠小时可飞4千米

  游戏 a÷2/3÷3/4

  机动:

  榨油机2/5小时榨油360千克,1小时榨油多少千克 ?

  有3升西瓜汁,倒入能装1/5升的杯子里,可以倒几杯 ?

分数除以整数教学设计2

  教学目标:

  1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

  2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

  3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

  教学重难点:

  使学生理解算理,正确总结、应用计算法则。

  教学难点:

  使学生理解整数除以分数的算理。

  教学过程:

  一、复习

  1、复习整数除法的意义

  (1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

  (2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

  2、口算下面各题

  ×3×××6

  二、新授

  1、教学例1

  (1)出示插图及乘法应用题,学生列式计算:100×3=300(克)

  (2)学生把这道乘法应用题改编成两道除法应用题,并解答。

  A、3盒水果糖重300克,每盒有多重?300÷3=100(克)

  B、300克水果糖,每盒100克,可以装几盒?300÷100=3(盒)

  (3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

  ×3=(千克)÷3=(千克)÷=3(盒)

  (4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。

  2、巩固分数除法意义的练习:P28“做一做”

  3、教学例2

  (1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

  (2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

  (3)引导学生数形结合,对照不同的`折法,说出两种不同的计算方法。

  (4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

  4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

  三、练习

  ÷3÷20÷5÷6

  四、总结

  1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

  2、谁来把这两部分内容说一说?

  板书设计:

  分数除以整数

  甲数÷乙数(0除外)=甲数×乙数的倒数

  (1)300÷3==100(2)÷3=×==

  分数除以一个数(0除外)等于分数乘这个数的倒数。

分数除以整数教学设计3

  教学目标:

  1、引导学生在具体的情景中借助已有的经验理解分数除法的意义并掌握分数除法的计算方法,能正确计算分数除以整数。

  2、通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能。

  教学重难点教学重点:分数除法意义的理解和分数除以整数的算法的探究。

  教学难点:分数除以整数的算法的探究。

  教具准备:课件,平均分成5份的长方形纸一张。

  设计意图教学过程特色设计:

  通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能

  一、复习

  复习整数除法的意义

  引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

  根据已知的乘法算式:5×6=30,写出相关的两个除法算式。

  二、新授

  (一)初步理解分数除法的意义。

  1、如果将一盒重千克的水果平均分成5份,求其中一份是多少千克,该怎样计算?

  学生试着列出算式。

  引导观察:这几道算式之间有怎样的关系?分数除法是什么样的运算?它的意义和整数除法的意义是否相同?

  2、归纳概括分数除法的意义。

  (二)分数除以整数。

  1、出示例1、引导学生分析并用图表示数量关系。

  问:求每份是这张纸的几分之几,怎样列式?

  2、列式计算。

  学生折一折,算一算。

  3、理清思路。

  学生说思路

  4、总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。

  三、练习

  第30页做一做

  四、作业练习

  教材P34第1、3、4题。

  五、总结

  今天我们学习了哪些内容?

  板书设计:

  略

分数除以整数教学设计4

  教学目标:

  1、在教师的鼓励引导下,学生积极地调动已有的知识经验,主动探求整数除以分数的计算方法。

  2、通过师生的分析与交流,学生能较快地理解整数除以分数的算理,尝试自己归纳计算法则,初步掌握整数除以分数的计算法则,能正确地进行有关的分数除法计算,并解决生活中一些简单问题。

  3、结合具体情境学生进一步体会估算在生活中的广泛应用,增强数学应用意识,感受分数除法与生活的密切联系。

  教学准备:

  多媒体课件、小黑板。

  教学过程:

  从生活中引入计算也可以如此有趣!

  1、 初步感悟: 知道今天是什么日子吗?(生齐声:中秋节!)对,中秋节!在这样特殊的日子里,能和六1班的同学一起学习一定是段令人难忘的经历。据我所知,昨天和今天来自南京市各个区的多位数学老师到咱们学校借班上课,我只是其中的一个。请大家猜一猜,这两天共有多少老师来上课?

  (学生议论纷纷;师:多了,少了,差不多了)

  这样吧,老师提供一条信息:我来自秦淮区第一中心小学,众多老师中只有我一人是咱们区的老师,占这次上课教师人数的。这下能知道共有多少位老师到你们学校上课吗? (学生们迅速回答出有14位老师。)

  2、 创设情境:前面提到中秋节,这可是我们中国人很重要的一个传统节日,你知道中秋节有哪些风俗?(生:吃月饼;晚上合家吃团圆饭;赏月;吃石榴)其实现在生活条件这么好,大家并不在意晚上那顿丰盛的晚餐,每逢佳节倍思亲,是浓浓的亲情牵挂着人们的心,对吗?那首歌唱得多好呀:常回家看看,回家看看这不,陈宇的爸爸也匆匆往家赶请看屏幕。

  出示例题:陈宇的爸爸在郊区工作,中秋节要回家与亲人团聚,他从单位骑摩托车到家要1小时,骑了18千米时发现用了小时,爸爸每小时行多少千米?

  反思与探索

  学生们是简单而纯洁的,他们总是睁大一双明亮的眼睛去观察身边的一切,用一颗真诚无暇的心作出判断和选择:过于理性、抽象、过于繁难或简单、脱离生活的数学课都会令其产生畏惧、厌烦的心理。虽然他们已经习惯于面对经过人为加工的纯数学问题,习惯于把自己熟悉的方法或公式复制到模型中就能解决问题。但常此以往,必然会降低学生从实际生活中收集、组合信息形成数学问题的能力,更可怕的是他们会逐渐拉开与数学的距离。其实数学和生活的关系是这样的密切,关注学生的生活,了解他们的学习基础和生活经验,创设贴近生活的情境,激发探究的欲望,枯燥的计算也能变得如此有趣!学生从中感受到的不仅是生动活泼的教学气氛,还有教师对他们的一份尊重与信任!

  良好的开端是成功的一半。课开头设计的猜一猜环节一下子就激起了学生的兴趣。在学生七嘴八舌之后,教师却并不急于揭示答案,而是不紧不慢地提供一条信息,我一人,占这次上课教师人数的,这样的设计是建立在学生已有的知识基础上的,学生可以用整数方法解答,同时这一个也让学生在解决问题的过程中初步感悟分数除法的算理,为下面进一步学习分数除法埋下伏笔。而利用中秋节巧妙引入例题,既合情合理又自然有趣,原来数学就在自己的身边!学生的探究就从这里开始了

  ※ 在经历中体验这样的探究很有意思!

  1、 捕捉信息:看了题目,你从中得到了哪些信息?有什么发现?

  2、 引导估算:(在师生合作完成线段图后)出示完整的线段图

  提问:这个线段图你们能看懂吗?能看图,估计一下1小时行多少千米?

  怎么能看出来?说出你的想法。

  1小时行?千米

  小时行?千米

  小时行18千米

  (思考片刻后有生回答:从图中能看出,全长是18千米的三倍多一点,估计爸爸1小时大约行五、六十千米。)

  3、 探求算法: 这只是估计,究竟每小时行多少千米?你打算怎么计算?用什么方法?选择你喜欢的方法具体算一算,算过后可以和小组中其他同学交流一下。(学生尝试用不同的方法解答,教师巡视。)

  4、 交流分析:

  1、学生代表汇报结果,有以下几种算法:

  a、18310 = 60(千米) 先求1份即小时行的,再求10份;

  b、180.3 = 60(千米) 把小时化成小数0.3小时;

  c、18(103)= 60(千米)先求总长是已经行的路程的几倍;

  d、18=18=60(千米)

  利用数量关系速度=路程时间,直接乘除数的倒数。

  2、让学生充分阐释前几种算法的算理。

  3、教师重点引导方法d的证明与理解。

  指出:同学们阐述了用整数、小数、分数乘法解答的理由,非常不错。

  而这是一道分数除法算式, 18 =18=60(千米)

  你是又根据什么来列式的? (板书:速度=路程时间)

  与昨天学习的知识相比,有什么不同?整数除以分数(板书课题)

  追问:你怎么想到用这种方法计算的?这样做的理由是什么?为什么可以转化成乘法来做?

  A利用线段图说明算理:

  学生先看图说说自己的理解。(从图上看, 1小时是小时的三倍多一些,1小时行路程的也是18千米的三倍多一些,具体说是倍。)接着出示:线段图(屏显:三个18千米闪动。)

  1小时行?千米

  小时行?千米

  18千米 18千米 18千米

  B用其他方法验证算理:

  谁能用其他方法验证?用方法a、18310 和方法c、18(103)说明。

  师随即板书思路18310=1810=18=60(千米)

  18(103) = 18=60(千米)

  5、 对比说明:同学们想出不同的方法来解决同一个问题,尽管大家思考的角度不同,但有一点是相同的都是积极地把新知识转化成已经学过的知识来解决,这一点老师非常欣赏,实际上这也是在数学学习中解决问题的一个重要思路。

  那么在这些计算方法中,你觉得哪一种算法比较好?,谁能证明自己的方法更简便,说出其它算法的不简便?(学生回答时教师必须注意设置矛盾)

  6、 归纳算法:想一想,整数除以分数在计算时转化成什么样的计算?你们能归纳一下吗?

  反思与探索

  在学习数的运算的过程中,我们的课堂除了要为学生营造一种

  生动活泼的教学气氛外,更重要的是应充分尊重学生的思想、情感、意志和行为方式,使学生形成探究创新的心理愿望和性格特征。让他们可以在自由的时空里主动地探索,大胆地发现,自信地表达,快乐地运用!

  掌握整数除以分数的算法是这节课的重点,但计算方法的得出决不应是教师塞给学生的,学生对算理的认识也不应是机械的,一切必须建立在放手让学生经历自主探索的过程上。会计算并不难,能理解为什么要这么算才是难点。教师充分尊重每个学生的选择,重视每个学生的表达,爸爸1小时行?千米学生面对这个具体的问题选择了不同的算法,他们有各自的理解和解释。教师用心倾听,及时板书,积极鼓励,适时引导:你们用不同的方法得到了同一个答案,都是积极地把新知识转化成已经学过的知识来解决,这一点老师非常欣赏!究竟每种解法代表什么思路,哪种方法更合适?18 =18=60(千米)又有其他解法不具备的哪些优点? 学生在探索实际问题的过程中,经历估计、求解、比较、分析、交流、验证、归纳几个环节,从而心服口服地接受了分数除法计算方法的正确性与合理性。

   在应用中提升我们喜欢做这样的练习!

  (在完成两组基本练习题之后,教师出示了下面的一组题,学生表现出浓厚的兴趣,积极思考,踊跃回答。)

  你能用分数除法的知识解决下面的问题吗(先估一估,再算一算。)

  (1)妈妈想为中秋节的晚餐添一道菜螃蟹,她在农贸市场选中的一种螃蟹,用90元可以买千克,妈妈带了120元,够不够买1千克?

  (学生们估算后又通过计算得出120元不够买1千克。但很快就有学生说:老师,妈妈可以只买120元的螃蟹呀;还有学生说:妈妈可以还价说不定就够买1千克呢!)

  (2)为迎接20xx年十运会,张伯伯所在的工艺品厂赶制一批纪念品,张伯伯用小时做了20件,想想他1小时能做完30件吗?

  (3)国庆长假期间陈晨要去看望爷爷奶奶,一家三口开汽车从家

  出发,小时行驶了50千米,已知陈晨家到爷爷家有100千

  米的距离,他们1小时能到达吗?

  (有学生这么估算:1小时的就是1小时的一大半时间行了50千米,剩下的时间肯定行不完另一个50千米的。接着有人反驳:如果剩下的时候里他们加速,也许1小时就可以到达爷爷家。又有人补充:那可要注意安全呀!)

  反思与探索

  学习数学,不能仅仅停留在掌握知识的层面上,必须学会思考和应用。我们的数学课要着力培养学生的应用意识。让学生能认识到现实生活中蕴涵着大量的数学信息,面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。 在拓展练习中提升对知识的认识,主动寻求知识的应用领域,才能开辟更为广阔的空间!所以看着学生们主动而开心地用他们所学的知识轻松去解决身边的问题,感觉真的很欣慰。