高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

鸽巢原理获奖教学设计

更新时间:2023-08-04 00:53:24 来源:高考在线

  鸽巢原理获奖教学设计1

  一、单元教材分析:

  本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的`结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。

  二、单元三维目标导向:

  1、知识与技能:引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。

  2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

  3、情感态度与价值观:

  (1)体会数学与生活的紧密联系,体验学数学、用数学的乐趣。

  (2)理解知识的产生过程,受到历史唯物注意的教育。

  (3)感受数学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。

  三、单元教学重难点

  重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。

  难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。

  四、单元学情分析

  “鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。能不能将

  这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。

  五、教法和学法

  1、让学生经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画草图的`方式进行“说理”。通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

  2、有意识地培养学生的“模型”思想。当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。

  3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。

  鸽巢原理获奖教学设计2

  一、教材分析

  《鸽巢原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解“鸽巢原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢原理”加以解决。

  二、学情分析

  “鸽巢原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“鸽巢原理”。教学中应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“鸽巢原理”解决问题带来的乐趣。

  三、教学理念

  激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“魔术游戏”,让学生置身游戏中开始学习,为理解鸽巢原理埋下伏笔。通过小组合作,动手操作的探究性学习把鸽巢原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。

  四、教学目标

  1、知识与技能:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。

  2、过程与方法:通过操作发展学生的类推能力,形成比较抽象的数学思维。

  3、情感与态度:通过“鸽巢原理”的灵活应用感受数学的魅力。

  五、教学重、难点

  重点:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。

  难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

  六、教学过程

  一、创设情境、引入新课

  同学们,你们喜欢魔术吗?今天,老师也给大家变一个魔术,请5名同学参加这个游戏。

  这是一副54张的扑克牌,我取出大小王,还剩52张,你们5人每人随意抽取一张,我知道至少有2张牌是同一花色的,你信吗?让我们带着疑问见证奇迹!

  在这个游戏中蕴含着一个有趣的数学原理叫做鸽巢原理,这节课我们就一起来研究鸽巢原理。(板书课题)

  二、自主学习、探究新知

  (一)活动一:

  1、研究3枝铅笔放进2个文具盒。

  (1)要把3枝铅笔放进2个文具盒 ,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。

  (2)反馈:两种放法:(3,0)和(2,1)。

  (3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)

  (4)“总有”什么意思?(一定有)

  (5)“至少”有2枝什么意思?(不少于2枝)

  小结:在研究3枝铅笔放进2个文具盒时,同学们表现得很积极,发现了“不管怎么放,总有一个文具盒放进2枝铅笔。

  (二)活动二:

  2、研究4枝铅笔放进3个文具盒。

  (1)要把4枝铅笔放进3个文具盒里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。

  (2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

  (3)从四种放法,同学们会有什么发现呢?(总有一个笔盒至少有2枝铅笔)

  (4)你能用更直接的方法,只摆一种情况,就能得到这个结论呢?(每个文具盒都先放进一枝,还剩一枝不管放进哪个文具盒,总会有一个文具盒至少有2枝笔)(你真是一个善于思想的孩子。)

  (5)这位同学运用了假设法来说明问题,你是假设先在每个文具盒里放1枝铅笔,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)

  (7)谁能用算式来表示这位同学的想法?(5÷4=1…1)商1表示什么?余数1表示什么?怎么办?

  (8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是枚举了所有放法,找规律,二是采用了“假设法”来说明理由,你觉得哪种方法更明了更简单?

  三、小组讨论、共同研究

  3、研究铅笔比文具盒多1的情况

  活动3、

  类推:把5枝铅笔放进4个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

  把6枝铅笔放进5个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

  把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

  把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

  总结规律从刚才我们的探究活动中,你有什么发现?(只要放的铅笔比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。)

  深入研究活动4、

  如果铅笔数比文具盒数多2呢?多3呢?是不是也能得到结论:“总有一个笔盒至少有2枝铅笔。”

  问题:把6枝铅笔放在4个文具盒里,会有什么结果呢?

  下面请你猜一猜:

  1)如果把6个苹果放入4个抽屉中,至少有几个苹果被放到同一个抽屉里呢?

  2)如果把8个苹果放入5个抽屉中,至少有几个苹果被放到同一个抽屉里呢?

  你发现了什么规律?

  介绍资料经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。 “ 鸽巢原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

  四、展示评研、归纳提升

  小结:从以上的学习中,你有什么发现?你有哪些收获呢?(在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。)

  五、拓展延伸,巩固提升

  做一做:

  1)7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个佶舍里。为什么?

  2)8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?

  (先让学生独立思考,在小组里讨论,再全班反馈)

  3)揭穿谜底:

  回答开始的问题: 我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?