高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

五年级下册数学优秀教案文案

更新时间:2023-08-18 15:32:48 来源:高考在线

2021五年级下册数学优秀教案文案1

一、应用题的来源应具备情感化、生活化和主题化。

在现实的课堂教学中,很多老师在导入或新授环节考虑了题材的生活化,但在练习中体现较少,或者说学习内容的生活化没有很好的贯穿于学生的整个学习过程。其实从课的导入,新授,练习及发展都可以统一在一个生活化的主题之下。另外,许多老师教学应用题时,将课题命名为“应用题”,这个名称在学生的大脑中并无多少概念,过于空洞,应更为形象与具体。比如,《游动物园中的问题》、《森林探险》等,相对于平均数问题,归一问题,工程问题等课题而言,对于学生来说更容易理解与接受,有吸引力,利于学生对学习材料产生兴趣,利于其以积极主动的姿态投入学习。更为重要的是这种对数学与现实生活联系的强调,也利于学生形成用数学的眼光看世界、主动地运用数学知识分析生活现象、主动得解决生活中所遇到的实际问题的能力。即发展良好的应用意识。

例如,在教学了分数应用题之后,可以设计如下问题:有一天,老师带了600元钱到家具公司买家具,便看见那里的家具都在降价。忽然,老师看见一套家具组合,老师很喜欢。衣柜200元,梳妆柜的价钱是衣柜的4/5,床的价钱比衣柜贵1/5。请你帮老师预算一下,老师带的钱够不够?又例如,在教学了按比例分配应用题之后,可以设计这样一道思考题让学生想办法由自己调制成一种盐与水的浓度为1:4的溶液。学生在解决这些问题时,与其说是在解答应用题,还不如说是在做身边的一件事情,他们不再是为了单纯的解题而解题,而是在尝试用自己的数学思维方式去观察生活。学生一定会兴趣倍增,积极性提高。

二、应用题的呈现方式应多样。

现实世界千姿百态,蕴含信息的方式也就多种多样,因而人们在日常生活中所接触到的问题更多的则是以表格、图文形式出现的,纯文字叙述的问题很少。所以要培养学生解决实际问题的意识和能力,就势必也需要在教学中创设一个类似于真实的生活的情境。而以前传统的应用题教学中,呈现方式比较单一,大多为文字叙述的结构也比较简单,总是若干个条件加上一个问题,所有的条件都用上后,正好解答出问题;解题的技巧性强,对提高学生的观察、分析、类比、推理等思维能力的帮助则不是很大。因此,随着课程改革的不断深入,在《课标》中则明确指出:“内容的呈现应采用不同的表达方式,以满足多样的学习需要。”在教学中,教师也可以突破教材在内容呈现方式上的局限性,采用多种多样的形式,将“纯文字化”的表达模式有机地与表格、漫画、情境图、数据单、情景剧表演等有效地结合起来,广泛地采用于教学之中。这样,既直观又形象,而且还图文并茂,生动有趣地呈现出素材,提高学生的兴趣,满足了多样化的学生的需求。

例如,在教学求平均数的应用题的时候后,我们可以尽量选取日常生活中常见的一些图表或数据,让学生结合表格来研究。如某一月的空气污染指数,某一个班学生测验的平均成绩等等。再例如“小青买了两本练习本,一枝毛笔,共用了四元钱。其中已知了一枝毛笔是两元钱,问一本练习本是多少钱?”这种应用题的呈现方式单一而且封闭,都是文字叙述,两、三个条件再加上一个问题。如果这种题目反反复复,出现的次数多了,学生的心里就会产生厌烦。如果是那样的话,做出来的效果肯定不佳。而对于同样一道例题,改用其他的方式呈现,如图文应用题。这样就使原本枯燥乏味,冷飕飕的数字罗列的应用题变成了活泼生动,容易被学生所接受,也符合学生的认知发展特点。

三、应用题解题的多样化、开放化。

对学生的发展而言,解决问题的学习价值不只是获得问题的结论或答案,其意义在于学生通过解决问题的教学活动,体验方法,以形成策略。在应用题教学中,我们不能把目光紧紧地定格在答案上,更应该关注让学生体验解决问题过程中的方法与策略。这些方法、策略的稳固与形成,将逐渐成为学生思维方式的重要组成部分,让学生以数学的眼光来审视与解决现实生活中的各类问题,也将是数学教育的价值所在。而传统应用题大多数结构良好,答案惟一,解题方向明确,只需要不断地重复和套用已经学过的公式和数量关系就可以解决。所以,毫无疑问,这对于培养学生的创新思维能力和应用能力来说,都是欠缺的。因此,要适度地引入开放性应用题,便能冲破传统应用题带来的封闭性,便能给学生创设一个更为广阔的思维空间,有助于培养学生的创新思维能力,提高学生的应用意识和能力。

例如,某一家服装厂接到了生产1200件T恤的任务。前3天完成了40%,照这样计算,还需要多少天才能完成任务?学生在解决这道题目的时候,可以根据数量之间的关系,知识之间的联系,对所给定的条件进行不同的组合,采用不同的方法解答。所以,对于这道题目,解法有四种,即(1)3/40%-3;(2)3-[(1-40%)/40%];

(3)设还需要x天才能完成任务。40%/3=(1-40%)/x;(4)(1-40%)/(40%/3)

又例如,现在有一种含有盐10%的盐水为400克,要想得到含有盐20%的盐水该怎么办?学生这道题目有以下三种策略:

策略一:要使盐水中的盐变多,则需要加盐;策略二:要使盐水中的水变少,则需要蒸发水;策略三:还可以加入含盐量高于20%的盐水。由于解决问题的策略多样化,学生找到了许多解决的方法,积极性越来越高,参与的意识也越来越强烈,从而也就培养了学生的创新能力。再例如下面一题:小明和小方同时从家中向学校出发。小明每分钟走60米,小方每分钟走50米。8分钟过后,两人则同时到校。问小明和小方两家相距有多少米?由于小明和小方家的地点不确定,所以,学生就会得出各种可能的结论。这对于培养学生的创新思维能力,提高数学应用意识和能力,培养良好的数学情感,效果颇佳。

另外,在应用题教学中我们应该调动每个学生的积极性,鼓励学生从不同角度,用不同思路,联系不同的相关体验,探索问题的多种解法,比较不同方法之间的长短优劣。因为在现实生活中的许多问题的解决方法都不是的,需要注意的是,这些方法中,不一定有好坏之分,只要是合理的,都应该加以肯定。不能仅关注解决问题的格式完整与否,答案正确与否。这对于提高学生解决问题的能力也有着重要影响。

四、应用题教学评价的全面化。

要重视解题过程的评价与反思,除了培养学生的主体意识,学会欣赏,体会成功的喜悦等情感、态度方面的功用以外,学生解决问题策略的形成也是不可缺少的支持。而在目前教学中,评价教学应用题的质量的主要标准是看学生应用题考试的分数。于是,便会出现这样一种怪现象:不少学生应用题的分数很高,但是,实际上的思维能力和解决问题的能力并不是很强。有的时候,学生一旦遇到新的问题,变束手无策了。因此,过于注重考试分数的评价方式是违背新课程理念的。新课程理念下的应用题教学评价应努力实现评价考核多元化,总的趋势是变终结性评价为发展性评价,变量化评价为质性评价。

总而言之,新课程改革为应用题的教学指明了方向,应以学生的发展为本,把问题解决的主动权交给学生,提供给学生更多的展示自己的思维方式和解题策略的机会,提供给学生更多的评价自己思维结果的诸多权利,那么学生便能在问题解决过程中体验到成功的时候,他们便会成长为自信而成功的问题解决者。

2021五年级下册数学优秀教案文案2

学习目标:

1. 使学生初步认识用字母表示数的作用

2. 会用含有字母的式子表示数量关系和一个量

学习过程:

一、自主学习

1、用字母表示数,有哪些好处?但要注意什么?

2、下面各式中,哪些运算符号可以省略?能省略的就省略写出来。

2×3 a×7 14+b a÷7 a×a 5-x 0.6×0.6

3、阅读教材主题图,理解图意。

4、(1)爸爸比小红大( )岁。 当小红1岁时,爸爸( )岁,当小

红2岁时,爸爸( )岁…….

这些式子,每个只能表示某一年爸爸的年龄。

(2)你能用一个式子表示出任何一年爸爸的年龄吗?

法1:小红的年龄+30岁=爸爸的年龄 , 法2:a+30 。

(3)你喜欢( )种表示方法,为什么,理由是( )。 想一想:a可以是哪些数?a能是200吗?为什么?

(4)当a=11时,爸爸的年龄是( ),算式写在书上47页。

6、完成教材第48页做一做。

二、合作探究、归纳展示

1、用含有字母的式子不仅可以表示( )、( ),也可以表示( )。

2、请结合自己的身高、体重情况,算算自己的标准体重,并讨论:比标准体重轻说明什么?如果比标准体重重,又说明什么?

三、课堂达标

1、用含有字母的式子表示下面的数量关系。

a与b的差( ) x与8.5的积( ) 比b多c的数( ) y的4倍( ) b除c( ) x减去a的2倍( )

2、填一填

(1)小红体重36千克,比小莉重a千克,小红体重( )千克。

(2)李佳有10元钱,买钢笔用去x元,还剩( )元。

2021五年级下册数学优秀教案文案3

教学内容:

人教版小学数学教材五年级上册第95页主题图、96页例3、第96页“做一做”,

教学目标:

1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题

2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。

教学重点:

掌握梯形面积的计算公式,并会用公式解决实际问题。

教学难点:

理解梯形面积公式推导方法的多样化,体会转化的思想。

考点分析:

会用梯形面积公式解决实际问题。

教学方法:

游戏引入——新知讲授——巩固总结——练习提高

教学用具:

课件、多组两个完全相同的梯形。

教学过程:

一、提出问题(课件出示教材第95页的主题图)。

教师:同学们在图中发现了什么?

教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

二、通过旧知迁移引出新课。

教师:同学们还记得平行四边形和三角形的面积怎么求吗?

1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。

2、课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法

3、教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?

三、揭示课题;

根据学生的回答,引出新课,梯形的面积。

板书课题--梯形的面积。

四、新知探究

1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。

2、请同学们打开学具袋,看看里面的梯形有什么特点?

生:各种梯形,每种两个,每种梯形颜色一样。

教师提出要求

①选择自己喜欢的梯形把它拼成我们学过的图形

②想一想,拼成怎样的图形,利用怎样的方法拼成的?

③它们的高与梯形的高有怎样的关系,它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?

④先独立思考后小组交流

生小组合作探究。师巡视指导,引导学生注意把转化前后图形各部分之间的关系找准。

3、(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示。)

师引导得出如下几种推导思路:(师边利用课件演示边讲解)

思路一:用两个完全一样的梯形拼成一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行边四边形的底等于梯形的上底与下底之和,从而推出

梯形面积=(上底+下底)×高÷2

思路二:把梯形剪成一个平行四边形与一个三角形,梯形的面积等于一个平行四边形面积与一个三角形面积之和,从而推出

梯形的面积 =上底×高+(下底-上底)×高÷2

=(上底+下底)×高÷2

思路三:沿梯形的一条对角线剪开,把梯形分割成两个三角形。得出梯形的面积等于两个三角形面积之和,从而推出

梯形的面积 =上底×高÷2+下底×高÷2

=(上底+下底)×高÷2

教师引导学生对以上的推导结果进行比较,最后得出“梯形面积=(上底+下底)×高÷2”。

师:如果上底用字a来表示,下底用b来表示,高用h来表示,那么梯形面积公式用字母公式可表示为什么?学生用字母表示出梯形的面积计算公式:S=(a+b)h÷2

五、巩固提升

1、(出示课件),三峡水电站全景图及第89页例3并读题。同时出示水电站的横截面的简图(梯形)。提问,实际求什么?

S =(a+b)h÷2

=(36+120)×135÷2

=156×135÷2

=10530(㎡)

2、计算下面图形的面积,你发现了什么?

六、总结结课

1、这节课你学到了什么?要计算梯形的面积,必须要知道几个条件?还要注意什么?

2、我们是怎样得出梯形面积的公式的?

(二)教师总结

今天我们利用转化的思想推导出了梯形的面积计算公式,并会用梯形的面积计算公式解决生活中的实际问题。

板书设计:

梯形面积=(上底+下底)×高÷2

梯形的面积 =上底×高+(下底-上底)×高÷2

=(上底+下底)×高÷2

梯形的面积 =上底×高÷2+下底×高÷2

=(上底+下底)×高÷2

2021五年级下册数学优秀教案文案4

教学内容:

人教版小学数学教材五年级上册第91页主题图、92页例2、 “做一做”, “你知道吗?”

教学目标:

1、知识与技能:探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题

2、过程与方法: 是学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3、情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习的兴趣。

教学重点:

理解并掌握三角形面积的计算公式

教学难点:

理解三角形面积计算公式的推导过程

教学方法:

创设情境——新知讲授——巩固总结——练习提高

教学用具:

多媒体课件、三角形学具

教学过程:

一、创设情境

师:我们学校有一批小朋友要加入少先队了,学校为他们做了一批红领巾,要我们帮忙算算要用多少布。同学们有没有信心帮学校解决这个问题?(屏幕出示红领巾图)

师:同学们,红领巾是什么形状的?

生:三角形的

师:你们会算三角形的面积吗?这节课我们就一起来研究,探索这个问题。

板书:三角形的面积

二、新知探究

1、课件出示一个平行四边形

师:平行四边形的面积怎么计算?

生:平行四边形的面积=底×高(板书:平行四边形的面积=底×高)

师:平行四边形的面积公式是怎样得到的?

生说推导过程

师:在研究平行四边形的面积的时,我门是把平行四边形转化成学过的长方形来研究的,那三角形的面积你打算怎么研究呢?

生1:我想把它转化成已学过的图形。

生2:我想看看三角形能不能转化成长方形或平行和四边形。

2、动手实验

师:请同学们拿出准备好的学具:两个完全一样的锐角三角形,直角三角形,钝角三角形;一个长方型,一个平行四边形,你们可以利用这些图形进行操作研究,看哪一组能用多种方法发现三角形面积的计算公式。

生小组合作,教师巡视指导。

3、展示成果,推导公式

师:同学们经过猜想,验证,已经推导出了三角形面积的计算公式。请展示给大家看。

生展示

汇报一:两个完全一样的锐角三角形拼成的平行四边形。

汇报二:两个完全一样的钝角三角形拼成的平行四边形

汇报三:两个完全一样的直角三角形拼成的平行四边形

除此之外,两个完全一样的直角三角形还可以拼成三角形

三角形的面积=长方形的面积(平行四边形)÷2

=长×宽÷2

=底×高÷2

4、例题讲解

红领巾底是100cm,高33 cm,它的面积是多少平方厘米?

三、巩固提升

1、一种零件有一面是三角形,三角形的底是5.6厘米,高是4 厘米。这个三角形的面积是多少平方厘米?(单位:厘米)

2、指出下面三角形的底和高,并口算出它们的面积。 ( 单位:厘米米)

3、上图是一个平行四边形,看图填空

平行四边形的面积是12平方厘米,三角形ABC的面积是( )平方厘米。

4、思考题 你能在图中再画出与涂颜色的三角形的面积相等的三角形吗?

四、总结结课

1、学生总结

这节课你学习了什么?你有什么收获?(小组说--组内总结--组间交流)

2、教师总结

今天我们一起探索了三角形的面积计算公式,并能应用于实际问题的解决中。

板书设计:

三角形的面积

平行四边形的面积 = 底×高

三角形的面积 = 长方形的面积÷2

= 长×宽÷2

= 平行四边形的面积÷2

= 底×高÷2

2021五年级下册数学优秀教案文案5

教学目标:

1、使学生经历和体验收集、整理、分析数据的过程,学会用画“正”字的方法收集整理数据,能完成相应的统计图,并体会统计是研究、解决问题的方法之一。

2、使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释,和同学交流自己的想法。

3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效的方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。

教学重点:

通过活动认识一些事件发生的等可能性。

教学难点:

理解红球和黄球的个数相等时,任意摸一次,摸到红球和黄球的---会是相等的。

教学准备:

多媒体,红球3个 黄球3个

教学过程:

一、创设情境,激趣导入。

1、出示装有3个红球的袋子

(1)谈话:如果从中任意摸一个球,结果怎样?(一定摸出红球)

(2)往口袋里加入3个黄球,如果从这样的口袋里摸一个球呢?(可能摸出红球,也可能摸出黄球)

2、揭题:在我们的生活中,有些事情一定会发生,有些事情会不会发生难以确定,只能说具有可能性。今天我们继续研究可能性问题。(板书:可能性)

二、活动体验,探索新知。

1、摸球。

(1)猜测。

(出示上述装有3个红球和3个黄球的透明口袋)

谈话:不看球从这个口袋中每次任意摸一个球,摸出以后把球再放回口袋,一共摸40次。猜一猜,红球和黄球可能各摸到多少次?

学生自由猜测

(2)验证。

谈话:这仅仅是我们的猜测,想知道自己猜得对不对,我们可以怎么做?(摸一摸)

①明确活动要求。

谈话:摸前先把袋中的球搅一搅,然后不看球从中任意摸一个,摸出后进行记录,把球再放入口袋中,如此,一共摸40次。

②明确统计方法。

提问:怎样能记住每次摸球的结果呢?

以前我们用过哪些方法来记录?(画“√”、涂方块…)

在生活中,你还见过哪些记录数据的方法?(引导说出画“正”字的方法)

怎样用画“正”字的方法来记录呢?谁能向大家介绍一下?

教师相---出示“摸球结果记录表”,向学生介绍。

讲解示范:一画“一”表示1次,1个“正”字表示记录5次。

红球

黄球

③明确分工。

谈话:活动时我们要互相合作,互相帮助,这样才能顺利完成任务。请各小组在组长的带领下进行分工活动。

④活动体验。

学生分组实验,教师巡视指导。

(3)归纳。

①各小组交流汇报统计结果,教师用实物投影展示。

② 提问:统计的结果和你的估计差不多吗?我们再将各小组摸到红球的次数和摸到黄球的次数进行比较,你有什么发现?(有的小组摸到红球的次数和摸到黄球的次数同样多,有的小组摸到红球的次数比摸到黄球的次数多一些,有的小组摸到红球的次数比摸到黄球的次数少一些)如果继续摸下去,摸到红球的次数和摸到黄球的次数会怎样?

讲述:这就说明从装有3个红球和3个黄球的袋子里任意摸一个球,摸到红球的---会和摸到黄球的---会是相等的,也就是摸到红球和黄球的可能性是相等的。

提问:我们是用什么方法来记录摸球结果的?你觉得用画“正”字的方法来记录好不好?(记录简便、整理迅速)记录之后我们又对数据作了怎样的处理?(填入统计表)可见用统计的方法来研究事情发生的可能性是一个很好的方法。通过实验和统计得到了什么结论?(摸到红球和黄球的可能性是相等的)

三、玩中交流,内化交流。

1、抛小正方体。

教师出示小正方体,问:知道小正方体有几个面吗?在6个面上都写有数字,小组成员仔细观察有哪些数字?各出现了几次?

如果把小正方体抛30次,那么“1”“2”“3”各字朝上的次数会怎样呢?

验证。

明确活动要求:小组成员按顺序轮流抛小正方体,并记录朝上数字的次数。

在小组内明确分工。

活动体验:学生先分组实验,再统计结果,填写下列表格。

朝上的数字123

次数

归纳。

各小组汇报统计结果,教师将数据填入下表。

朝上的数字

123

合计

第一小组

第二小组

第三小组

第四小组

提问:仔细观察统计表,统计的结果和你估计的差不多吗?你发现了什么?

反思。通过这一活动,你又明白了什么?为什么1、2、3朝上的次数差不多?

讲述:根据合计栏里的数据,我们可以看出抛的次数越多,数字1、2、3朝上的次数就越接近。那么抛一次,向上的数字有几种可能性?这三种可能性的大小怎样?(相等)

三、拓展深化

谈话:如果要在装有红球和蓝球的口袋中任意摸一个球,摸到红球和蓝球的可能性相等,可以怎样放球?

学生各抒己见

谈话:为什么可以这样放?(因为红球和蓝球的个数相同,所以任意摸一个球,摸到红球和蓝球的可能性相等。)

1、完成“想想做做”第2题

先小组讨论,再展示交流,说说想法。

四、总结

提问:通过这节课的学习,你学会了什么?知道了什么?

板书设计:

统计与可能性

3个红球 3个黄球

当口袋里红球与黄球一样多时,摸到红球与黄球可能性是相等的