高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

北师大五年级上册数学教案最新例文

更新时间:2023-08-12 17:28:29 来源:高考在线

北师大五年级上册数学教案最新例文1

教学目标:

1.使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

2.使学生进一步体会“转化”方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。

3.体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。

教学重点:

探索并掌握圆的面积公式,能正确计算圆的面积。

教学难点:

理解圆的面积公式的推导过程。

教学准备:

圆的面积公式的推导图。

一、回顾旧知,引入新知

1.师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。

学生回答,教师予以肯定。

2.提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?

3.引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。

(板书:圆的面积)

设计意图 通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。

二、合作交流,探究新知

1.教学例7。

(l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。

(2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。

(3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?

(4)学生独立完成填空。

(5)猜测:圆的面积大约是正方形面积的几倍?

学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。

(6)出示例7后两幅图,按照同样的方法进行计算并填表。

正方形的面积/

圆的半径/

圆的面积/

圆面积大约是正方形面积的几倍

(精确到十分位)

2.交流归纳:观察上面的表格,你有什么发现?

通过交流,明确

(1)圆的面积是它的半径平方的3倍多一些。

(2)圆的面积可能是半径平方的兀倍。

3.教学例8。

(l)谈话:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些,那么圆的面积究竟应该怎样来计算呢?

(2)操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。

(3)提问:拼成的图形像什么图形?追问:为什么说它像一个平行四边形?

初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?

(4)进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?

(5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。

(6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆的半径;长方形的长是圆周长的一半。

(7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?

(8)根据学生的回答,教师板书

长方形的面积一长×宽

圆的面积=

(9)追问:有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?

4.教学例9。

(1)出示例9,提问:有没有在生活中见过自动旋转喷水器?

(2)想象一下自动喷水器旋转一周后喷灌的地方是什么图形,喷水的最远的距离是什么意思。

(3)学生独立完成计算。

(4)集体交流。

5.教学例10。

(1)请同学读题,解读题意。

(2)找出题中的已知条件。

(3)分析解题过程。

(4)明确各个量之间的转化关系。

三、巩固练习,加深理解

1.完成“练一练”。

(1)学生独立解答。

(2)集体交流。

2.完成练习十五第1题。

(l)学生独立解答。

(2)集体交流。

3.完成练习十五第3题。

(1)学生列式后用计算器计算。

(2)集体交流。

4.完成练习十五第4题。

(1)学生独立解答。

(2)集体交流,指出:已知周长求面积,先要根据周长求出半径。

5.作业:练习十五第2、5题。

四、课堂小结

师:通过今天的学习,你有什么收获?

学生发言,教师点评。

圆的面积

长方形的面积=长×宽

圆的面积=

北师大五年级上册数学教案最新例文2

教学目标:

1.让学生经历已知一个圆的周长求这个圆的直径或半径的过程,体会解题策略的多样性。

2.进一步理解周长、直径、半径之间的关系, 能熟练运用圆周长的公式解决一些实际问题。

3.感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

教学重点:

已知一个圆的周长求这个圆的直径或半径。

教学难点:

理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。

教学准备:

圆形图片。

教学过程:

一、复习旧知,引入新知

提问

1.什么是圆的周长?圆的周长计算公式是什么?

2.把圆规两脚尖分开4厘米画一个圆,这个圆的半径是多少?直径呢?周长呢?

指名回答,明确计算方法。

3.口答,求下列各圆的面积。

(l)r=2cm r=3cm r=5cm

(2)d=2cm d=3cm d=5cm

4.引入:知道圆的直径和半径,我们能很快算出圆的周长。如果只知道圆的周长,我们能算出它的直径和半径吗?今天这节课我们来继续研究圆周长的知识。(板书:圆的周长计算的实际运用)

二、合作交流,探究新知

1.教学例6。

(1)出示例6的情境图,指名读题,并且找出条件和问题。

(2)讨论:如何准确地测算出这个花坛的直径?

(3)交流后,明确:先测量出这个花坛的周长,再利用圆的周长计算公式计算

花坛的直径。

(4)出示测量结果:花坛的周长是251.2米。

(5)学生独立完成。

(6)集体订正,教师板书

方法一:列方程解答。

解:设花坛的直径是x米。

3. 14x=251.2

x=251. 2÷3. 14

x=80

答:花坛的直径是80米。

方法二:算术方法解答。

251. 2÷3. 14 =80(米)

答:花坛的直径是80米。

(7)师:两种方法有什么相同点和不同点?你喜欢什么方法?

2.小结。

(l)提问:已知圆的周长,如何求圆的半径或直径?

(2)学生回答,教师板书

①列方程解答。

②d=C÷ r=C÷ ÷2

三、巩固练习,加深理解

1.完成“练一练”。

(1)学生独立完成。

(2)集体交流。

2.完成练习十四第8题。

(1)借助圆柱形教具演示,帮助学生理解什么是“树干横截面,,。

(2)学生独立思考并计算。

(3)集体交流。

3.完成练习十四第9题。

(1)理解“拱门的高度”的含义。

(2)学生独立计算。

(3)集体订正。

4.完成练习十四第10题。

(1)学生独立思考。

(2)集体交流,明确:可以通过计算来比较,也可以根据周长的计算公式来直接比较。

5.作业:练习十四第6、7、10题。

四、课堂小结

师:通过这节课的学习,你有什么收获?

学生发言,教师点评。

板书设计:

圆的周长计算的实际运用

方法一:列方程解答。

解:设花坛的直径是x米。

3. 14x=251.2

x=251. 2÷3. 14

x=80

答:花坛的直径是80米。

方法二:算术方法解答。

251. 2÷3. 14 =80(米)

答:花坛的直径是80米。

d=C÷ r=C÷ ÷2

北师大五年级上册数学教案最新例文3

教学目标:

1.经历圆周率的探索过程,理解并掌握圆周率的意义和近似值,初步理解并掌握圆的周长计算公式,能正确计算圆的周长。

2.培养学生的观察、比较、分析和动手操作的能力,发展学生的空间观念,培养学生抽象概括的能力和解决简单的实际问题的能力。

3.通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

教学重点:

理解并掌握圆的周长的计算公式。

教学难点:

理解圆的周长与直径之间的关系。

教学准备:

圆规、剪刀、绳子、尺子。

教学过程:

一、复习旧知,引入新知

1.教师在黑板上画圆。

(1)提问:你对圆有哪些了解?

(2)指名回答,同学之间相互补充。

(3)你还想了解什么?

2.通过学生的回答,引出:这节课我们就…起来研究圆的周长。(板书:圆的周长)

二、合作交流,探究新知

1.认识周长的含义。

(1)师:你能指出黑板上这个圆的周长吗?

(2)从实物中指出圆的周长。

(3)用语言表述圆的周长。

学生回答,教师总结:圆的周长就是指围成圆的曲线的长度。

2.教学例4。

(1)出示例4,了解轮胎规格。明确:这里的22英寸、24英寸、26英寸是指

轮胎的直径。

(2)启发思考:如果把它们各滚动一圈,哪种车轮行驶的路程比较长?

(3)比较这三个车轮的直径和周长,你又有什么发现?

(4)小结:直径越大,圆就越大,圆的周长也就越长。圆的周长和直径到底有什么关系呢?接下来我们继续研究。

3.教学例5。

(1)讨论实验方案。要研究直径和周长间有什么关系,我们可以怎样做?

(2)学生回答后,小结:我们可以画几个圆,量一量它们的直径和周长,算一算周长除以直径的商。

(3)明确要求

①画三个大小不同的圆。

②用尺子量出直径。

③用线围出圆的周长并用尺子挞出长度。

④边操作边填好表格。

周长/cm 直径/cm 周长除以直径的商

(保留两位小数)

(4)学生分组按要求操作,要求分工明确。

(5)整理学生的测量结果,汇总。

(6)观察表格,说说有什么发现。

学生回答后,小结:一个圆的周长总是直径的3倍多一些。

4.认识圆周率。

(1)介绍圆周率,并板书: ≈3.14

(2)阅读教材第102页的“你知道吗”内容。

5.推导得出圆的周长计算公式及其字母公式。

板书: 或

三、巩固练习,加深理解

1.完成“试一试”。

(l)根据刚刚学过的圆的周长的计算方法,学生独立计算车轮的周长。

(2)指名说说计算方法。

2.完成“练一练”。

(l)学生独立完成计算。

(2)汇报交流。

3.完成练习十四第1题。

(1)学生看图,说说题目中的已知条件。

(2)学生独立完成计算。

(3)交流计算方法。

4.作业:练习十四第2、3、4题。

四、课堂小结

师:这节课我们研究了圆的周长,谁能说说是用什么方法进行研究的?你有

哪些收获?

板书设计:

圆的周长

周长/cm 直径/cm 周长除以直径的商

(保留两位小数)

≈3.14

北师大五年级上册数学教案最新例文4

认识扇形

教学目标:

1.在观察、讨论、判断等活动中,经历初步认识扇形的过程。

2.知道扇形,初步了解扇形的特征,能在圆中画出扇形。

3.体会扇形和圆的关系,感受扇形图与名称的联系。,

教学重点:

认识扇形以及圆心角和弧。

教学难点:

认识扇形以及圆心角和弧。

教学准备:

教师准备两把折扇(其中一把圆形扇)、画有教材中四幅图的小黑板;学生准备水彩笔、量角器、直尺。

教学过程:

一、导入新课

师:(用折扇作为导入新课的道具)同学们对折扇并不陌生,能说说你们对它的认识吗?

像折扇打开形状(教师打开折扇演示)的平面图形,在数学上,我们称之为“扇形”。(出示课题:认识扇形)对扇形你想了解哪些知识呢?

学生自由讨论,指名交流汇报。

教师:同学们说的这些知识,我们今天一起来解决。

二、探究新知

师:请同学们仔细观察下图,圆中的涂色部分与圆有什么关系?

它们是圆的一部分,扇形是由圆心角的两条半径和圆心角所对的弧围成的图形。形象地说,就是两条线段和一段弧(曲线)围成了扇形。

1.认识圆心角。

出示例3图。

教师在右图的基础上标出∠1,指出:像∠1这样,顶点在圆心上的角叫作圆心角。

提问:圆心角是由什么组成的?顶点在什么上?

使学生认识到:圆心角是由两条半径和圆心组成的,所以圆心角的顶点在圆心上。

教师可以在黑板上画出几个角,让学生判断哪些是圆心角。

教师接着在黑板上画一个圆,在圆上分别画出圆心角是 、 、 、 的扇形,让学生比较这些扇形的大小。使学生明确:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形就越大。可以再次演示折扇,同一把扇子,张开程度不同,扇面的大小就不同。

2.认识弧。

教师拿出圆规和直尺,先画一个虚线圆,在圆上取A、B两点,再用实线A、B两点间的部分。(弧是圆上的一部分,这样处理易于理解)

师:请同学们观察一下,这两点间的实线部分是在什么上画出来的?

师:圆上A、B两点之间的部分叫作弧,读作“弧AB"。

然后让学生将么1所对的弧涂成红色,并找出前面3个涂色部分的圆心角和它所对的弧,用喜欢的颜色表示出来。

然后,教师再用另一种颜色显示出“弧AB”的反弧,让学生知道这也是一条弧。

3.认识扇形。

师:通过刚才的学习,你认为扇形是一种怎样的图形呢?

小结:扇形是由圆心角的两条半径和圆心角所对的弧围成的图形。形象地说,就是两条线段和一段弧(曲线)围成了扇形。

(l)让学生观察屏幕上出现彩色的OA、0B两条半径,同时在弧AB与半径OA、半径OB所围成的图形中涂上颜色。

(2)教师指着这块涂有颜色的图形说:这就是扇形。

(3)让学生继续在练习本上画出扇形。(连接圆心O和弧AB的两个端点A.B,形成半径OA和半径OB,再让学生在扇形中涂上颜色或者画上阴影——斜线)

让学生试着画扇形,通过操作清楚地认识扇形。

(4)教师指着屏幕上圆中扇形的另一边空白部分问学生:这个图形叫什么图形?

生:这个图形也是由一条弧和经过这条弧的两端的两条半径围成的图形,所以,也应该是一个扇形。

教师肯定学生的回答。

4.比较下面两个图形(扇形和三角形),说一说它们之间的区别。

左边的图形是扇形,右边的图形是三角形。它们之间的区别是:扇形是由两条半径和一条弧围成的图形,三角形是由三条线段围成的图形。尽管有的图形的两条边也是圆的半径,但是第三条边不是弧,而是线段,这个图形不能称为扇形,它是三角形。弧是圆的一部分,是曲线,而线段是直线的一部分。

三、巩固练习

1.完成“练一练”第1题。

指名学生回答扇形的定义和特征。

学生独立完成练习。

请学生汇报答案并给出理由。

2.完成“练一练”第3题。

学生先观察图中的三个部分。

提问:如何比较扇形的大小?

四、课堂小结

师:通过这节课的学习,同学们有什么收货呢?同桌交流一下吧!

板书设计:

认识扇形

顶点在圆心的角叫作圆心角。

北师大五年级上册数学教案最新例文5

圆的认识

教学内容:

科书第85~87页例1、例2,以及随后的“练一练”,练习十三第1~3题。

教学目标:

1.使学生在观察、画图、讨论等活动中感受并发现圆的基本特征,知道圆的圆心、半径和直径的含义;会用圆规画指定大小的圆;能用圆的知识解释一些日常生活现象。

2.使学生在活动中进一步积累认识图形的经验,增强空间观念,发展数学思考。

3.使学生进一步体验图形与生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

教学过程:

一、引入新课

1.游戏:摸图形。

出示装有长方形、正方形、平行四边形、三角形、梯形和圆形纸片的袋子。

提出要求:同学们喜欢做游戏吗?老师给大家带来了一个袋子,里面装有很多平面图形。请一位同学把它们依次摸出来,其他同学一起说出图形的名称。

2.出示学生摸出的圆形纸片,指出:这是一个圆形纸片(板书:圆)。圆与我们以前学过的三角形、长方形等多边形相比有什么不同?它有哪些有趣的特征?这节课我们一起来研究这些问题。

板书:圆的认识。

二、教学例l

1.提问:你在生活中见过圆吗?举例说一说。

学生交流时,注意以下几点:第一,如果学生说的圆形物体就在身边,可以让他们指一指物体上的圆;第二,课前要准备一些典型的、大小不同的圆形物体或图片,当学生说到这些物体时,可及时呈现出来;第三,如果学生把球当成了圆,可以通过比较让他们知道球是立体图形,而圆是平面图形。

2.追问:说了这么多的圆,看了这么多的圆,大家想不想动手画一个圆呢?先动脑筋想一想,再用手头的工具动手画一画。

3.学生独立画圆。组织交流时,可结合教材所列的画法,有针对性地介绍一些典型画法。如果有学生想到了用圆规画圆,不要急于让他们说出具体的操作过程。

4.启发思考:圆和以前学过的三角形、长方形等多边形相比有什么不同?

在交流中相机明确:以前学过的长方形、正方形、三角形、平行四边形和梯形都是由线段围成的,而圆是由曲线围成的图形。

5.介绍圆规:刚才,我们用不同的方法画出了圆,真可谓“八仙过海,各显神通”。但通常我们会借助一个专门工具来画圆,这个工具就是圆规。圆规有两只脚,一只脚是针尖,另一只脚上装着用来画圆的笔,两只脚可随意叉开。

6.提出要求:你能试着用圆规画出一个圆吗?

进一步要求:边画边想,用圆规画圆一般分为哪几个步骤?需要注意些什么?

7.先让学生说说自己画圆的过程,教师在黑板上示范画圆,适时板书:两脚叉开。固定针尖。旋转成圆。

引导反思:你认为画圆时应注意些什么?

根据学生的回答,小结:有针尖的一只脚要固定在一点;旋转圆规时两脚间的距离必须保持不变。

8.组织练习:请大家把圆规两脚之间的距离统一确定为4厘米,按上述步骤再画一个圆,在小组里比一比,谁画得好。

9.介绍圆心、半径和直径。

结合介绍在图中画出相应的线段,标出相应的字母,提醒学生注意每个字母的写法。再让学生结合自己画圆的过程,说说对这些概念的理解,并在自己所画的圆中标出圆心、画一条半径和一条直径,并分别用字母表示。

(1)圆的大小是由什么决定的?

学生回答后,教师总结:画圆时圆的大小是由圆规两脚间的距离决定的。

(2)指名在黑板上的圆中表示出两脚的距离。

教师总结并板书:圆规两脚间的距离就是连接圆心和圆上任意一点的线段,叫作半径,用字母r表示。

(3)教师画出直径,说说这条线段有什么特点。

学生回答后,教师总结并板书:通过圆心并且两端都在圆上的线段,叫作直径,用字母d表示。

10.探究圆的特征。

(1)出示例2的问题。

(2)学生在小组里操作、讨论,形成结论。教师巡视。

(3)小组汇报,教师板书

①在同一个圆里,半径有无数条,直径有无数条。

②在同一个圆里,半径的长度都相等,直径的长度都相等。

③同一个圆中直径的长度是半径的2倍,半径的长度是直径的一半。

④圆是轴对称图形,有无数条对称轴。

(4)说说你是怎么得出每一条结论的,指名验证。

三、巩固练习,加深理解

1.完成“练一练”第1题。

(l)出示三个图形。

(2)指名说说各圆的半径和直径。

(3)评议:为什么其他的线段不是半径或直径?

2.完成“练~练’’第2题。

(1)学生独立画圆,并标出各部分的名称。

(2)指名说说画圆的过程。

3.完成练习十三第1题。

(l)学生独立填表。

(2)指名说说思考过程。

4.完成练习十三第5题。

(l)学生独立操作后,在小组里交流。

(2)集体汇报交流。

5.作业:练习十三第2、3、6题。

四、课堂小结

师:这节课我们学习了什么?你有哪些收获?

学生发言,教师点评。

板书设计:

圆的认识

①在同一个圆里,半径有无数条,直径有无数条。

②在同一个圆里,半径的长度都相等,直径的长度都相等。

③同一个圆中直径的长度是半径的2倍,半径的长度是直径的一半。

④圆是轴对称图形,有无数条对称轴。