高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

人教版七年级下册数学第七章教案泷州中学范文

更新时间:2023-08-07 07:53:33 来源:高考在线

2021人教版七年级下册数学第七章教案泷州中学范文1

一、教学目标设计

[知识与技能目标]

1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

2、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

[过程与方法目标]

限度的发挥学生的主体参与,让学生在教师的引导启发,师生的交流与探索下,轻松愉快地学到新知识。

[情感态度与价值观]

借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想,让学生采取自主探索,合作交流的学习方式。

二、教材解读

借助数轴引出对绝对值的概念,并通过计算、观察、交流、发现绝对值的性质特征,利用绝对值来比较两个负数的大小。

让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和

字母,多鼓励学生通过观察、归纳、验证。

、教学过程设计与分析

一、情境导入

[课件展示,激趣感知]

博物馆、农场到学校与学校到博物馆农场的距离的关系。

[媒体展示课件,认知生活中的有些问题]

不考虑相反意义,只考虑具体数值。

[创设情境,实例导入]利用动画展示,让学生在有趣的图画中感受绝对值激发学生的兴趣。

实物的形象符合学生心理,学生兴趣很高,踊跃发言,95%的学生能顺利的解决问题。

师生互动

[提出问题,引发讨论]

1、引导学生得出绝对值定义及表示方法。

2、同桌之间互相举例。

[展示:启发学生交流了解绝对值]

归纳绝对值概念,教师指出表示方法。

[师生互动、探索新知]:学生根据情境感知初步认知绝对值,并通过对其概念的理解求解一个数的绝对值。

同桌之间举例,效果良好,体现了“自主——协作”学习。

阅读课文,互动探索

求解各数的绝对值后讨论

1、想一想互为相反数的两个数的绝对值有什么关系?学生举例,并进行观察、比较、归纳。

2、议一议一个数的绝对值与这个数有什么关系?小组讨论、交流教师引导学生用自己的语言描述所得结论教师质疑:一个数的绝对值是否为负数?学生通过分析理解绝对值的内在涵义。

阅读课文:从各数的绝对值归纳绝对值的代数意义。

[阅读课文:“想一想]提出问题,引起学生的思考。

[阅读课文:“议一议]

学生分析各类数的绝对值与本身的关系,并对教师的质疑进行深究。

[趣引妙答,思路点拨]通过学生举例思考,对互为相反数的两个数的绝对值进行观察对比,从而得到它们的关系。

学生从“特殊——一般”分类归纳绝对值的代数意义,并通过归纳总结出绝对值的内在涵义,体现学生的主体性。

积极调动学生的思维,使学生在协商、讨论中将问题逐渐明朗化、具体化,在共享集体思维成果的基础上达到对当前所学内容比较全面、正确的理解。

3、做一做

[激趣探知]

教师出示过关题目

学生通过自主探索最终找到两个负数比较大小的方法,绝对值大的反而小。

师生归纳两页数比较大小的两种方法。

[探索用绝对值比较两负数的方法]

体验概念的形式过程

旧知识的引用,让学生在轻松愉快的环境中获取新知,从已有知识逐渐到新知识,不但可激发学生的兴趣,并且培养学生的探索精神,同时分解了本节的难点。

从旧知识层层引入,学生兴趣十足,提高了教学效果,突破了难点,学生接受轻而易举。

巩固练习

[绝对值比较两负数大小的运用]

情境:比较下列每组数的大小。

[媒体展示,出示习题]:

运用绝对值比较负数大小。

[变成训练,巩固反馈]

继续对绝对值比较负数大小进行巩固练习。

由以上练习层层深入,学生解决问题的能力大大提高,并且印象深刻。

知识延伸

[学生探究,教师点拨]

[媒体展示]

绝对值定义,代数意义及内在涵义的的灵活应用。

[知识延伸,目标升华]

充分发挥学生的自主探索能力,使学生能够深入、细致的理解知识点。

学生能够互相评点,共同探索,既发展了自主学习能力,又强化了协作精神。

七、教学板书设计

2021人教版七年级下册数学第七章教案泷州中学范文2

一、说教材分析

1.教材的地位和作用

二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。

2.教学目标

知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。

能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。

情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。

3.重点、 难点

重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。

难点:在实际生活中二元一次方程组的应用。

二、教法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。

三、学法

“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。

四、教学过程

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习旧知,温故知新

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

由问题知道,题中包含两个必须同时满足的条件:

胜的场数+负的场数=总场数,

胜场积分+负场积分=总积分。

这两个条件可以用方程

x+y=22

2x+y=40

表示:

上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.

把两个方程合在一起,写成

x+y=22

2x+y=40

像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

(3)发现问题,探求新知

满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。

2021人教版七年级下册数学第七章教案泷州中学范文3

平行线

学习目标:1.理解平行线的意义两条直线的两种位置关系;

2.理解并掌握平行公理及其推论的内容;

3.会根据几何语句画图,会用直尺和三角板画平行线;

学习重点:探索和掌握平行公理及其推论.

学习难点:对平行线本质属性的理解,用几何语言描述图形的性质

一、学习过程:预习提问

两条直线相交有几个交点?

平面内两条直线的位置关系除相交外,还有哪些呢?

(一)画平行线

1、 工具:直尺、三角板

2、 方法:一"落";二"靠";三"移";四"画"。

3、请你根据此方法练习画平行线:

已知:直线a,点B,点C.

(1)过点B画直线a的平行线,能画几条?

(2)过点C画直线a的平行线,它与过点B的平行线平行吗?

(二)平行公理及推论

1、思考:上图中,①过点B画直线a的平行线,能画 条;

②过点C画直线a的平行线,能画 条;

③你画的直线有什么位置关系? 。

②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?

二、自我检测:(一)选择题:

1、下列推理正确的是 ( )

A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d

C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c

2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )

A.0个 B.1个 C.2个 D.3个

(二)填空题:

1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。

2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:

(1)L1与L2 没有公共点,则 L1与L2 ;

(2)L1与L2有且只有一个公共点,则L1与L2 ;

(3)L1与L2有两个公共点,则L1与L2 。

3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。

4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。

三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

2021人教版七年级下册数学第七章教案泷州中学范文4

课型:新授课 备课人:徐新齐 审核人:霍红超

学习目标

1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛

2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.

重点难点

同位角、内错角、同旁内角的特征

教学过程

一·导入

1.指出右图中所有的邻补角和对顶角?

2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?

若都不是,请自学课本P6内容后回答它们各是什么关系的角?

二·问题导学

1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成"直线 和直线 与直线 相交" 也可以说成"两条直线 , 被第三条直线 所截".构成了小于平角的角共有 个,通常将这种图形称作为"三线八角"。其中直线 , 称为两被截线,直线 称为截线。

2. 如图⑶是"直线 , 被直线 所截"形成的图形

(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如" " 字型.具有这种关系的一对角叫同位角。

(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫内错角。

(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫同旁内角。

3.找出图⑶中所有的同位角、内错角、同旁内角

4.讨论与交流:

(1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别?

(2)归纳总结同位角、内错角、同旁内角的特征:

同位角:"F" 字型,"同旁同侧"

"三线八角" 内错角:"Z" 字型,"之间两侧"

同旁内角:"U" 字型,"之间同侧"

三·典题训练

例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?

小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;

两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;

自我检测

⒈如图⑷,下列说法不正确的是( )

A、∠1与∠2是同位角 B、∠2与∠3是同位角

C、∠1与∠3是同位角 D、∠1与∠4不是同位角

⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.

⒊如图⑹, 直线DE截AB, AC, 构成八个角:

① 指出图中所有的同位角、内错角、同旁内角.

②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?

⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .

①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.

②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)

相交线与平行线练习

课型:复习课: 备课人:徐新齐 审核人:霍红超

一.基础知识填空

1、如图,∵AB⊥CD(已知)

∴∠BOC=90°( )

2、如图,∵∠AOC=90°(已知)

∴AB⊥CD( )

3、∵a∥b,a∥c(已知)

∴b∥c( )

4、∵a⊥b,a⊥c(已知)

∴b∥c( )

5、如图,∵∠D=∠DCF(已知)

∴_____//______( )

6、如图,∵∠D+∠BAD=180°(已知)

∴_____//______( )

(第1、2题) (第5、6题) (第7题) (第9题)

7、如图,∵ ∠2 = ∠3( )

∠1 = ∠2(已知)

∴∠1 = ∠3( )

∴CD____EF ( )

8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)

∴∠1 = ∠3( )

9、∵a//b(已知)

∴∠1=∠2( )

∠2=∠3( )

∠2+∠4=180°( )

10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

二.基础过关题:

1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。

证明:∵∠A=∠F ( 已知 )

∴AC∥DF ( )

∴∠D=∠ ( )

又∵∠C=∠D ( 已知 ),

∴∠1=∠C ( 等量代换 )

∴BD∥CE( )。

2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。

证明:∵∠B=∠BGD ( 已知 )

∴AB∥CD ( )

∵∠DGF=∠F;( 已知 )

∴CD∥EF ( )

∵AB∥EF ( )

∴∠B + ∠F =180°( )。

3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.

2021人教版七年级下册数学第七章教案泷州中学范文5

一、 内容简介

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:

1、在学习本课之前应具备的基本知识和技能:

①同类项的定义。

②合并同类项法则

③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:

在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、 教学/学习目标及其对应的课程标准:

(一)教学目标:

1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理

数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同

角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难

和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

四、 教育理念和教学方式:

1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

教学是师生交往、积极互动、共同发展的过程。当学生迷路的时

候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2、采用“问题情景—探究交流—得出结论—强化训练”的模式

展开教学。

3、教学评价方式:

(1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主

动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,

揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

(3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的

教学效果。

五、 教学媒体 :多媒体 六、 教学和活动过程:

教学过程设计如下:

〈一〉、提出问题

[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析问题

1、[学生回答] 分组交流、讨论

(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

(1)原式的特点。

(2)结果的项数特点。

(3)三项系数的特点(特别是符号的特点)。

(4)三项与原多项式中两个单项式的关系。

2、[学生回答] 总结完全平方公式的语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍;

两数差的平方,等于它们平方的和,减去它们乘积的两倍。

3、[学生回答] 完全平方公式的数学表达式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、运用公式,解决问题

1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

(m+n)2=____________, (m-n)2=_______________,

(-m+n)2=____________, (-m-n)2=______________,

(a+3)2=______________, (-c+5)2=______________,

(-7-a)2=______________, (0.5-a)2=______________.

2、判断:

( )① (a-2b)2= a2-2ab+b2

( )② (2m+n)2= 2m2+4mn+n2

( )③ (-n-3m)2= n2-6mn+9m2

( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

( )⑥ (-a-2b)2=(a+2b)2

( )⑦ (2a-4b)2=(4a-2b)2

( )⑧ (-5m+n)2=(-n+5m)2

3、小试牛刀

① (x+y)2 =______________;② (-y-x)2 =_______________;

③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

〈四〉、[学生小结]

你认为完全平方公式在应用过程中,需要注意那些问题?

(1) 公式右边共有3项。

(2) 两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

〈五〉、冒险岛:

(1)(-3a+2b)2=________________________________

(2)(-7-2m) 2 =__________________________________

(3)(-0.5m+2n) 2=_______________________________

(4)(3/5a-1/2b) 2=________________________________

(5)(mn+3) 2=__________________________________

(6)(a2b-0.2) 2=_________________________________

(7)(2xy2-3x2y) 2=_______________________________

(8)(2n3-3m3) 2=________________________________

〈六〉、学生自我评价

[小结] 通过本节课的学习,你有什么收获和感悟?

本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

〈七〉[作业] P34 随堂练习 P36 习题

七、课后反思

本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准