高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

最新初一上册的数学教案文案

更新时间:2023-08-14 02:13:18 来源:高考在线

最新初一上册的数学教案文案1

有理数

教学目标

1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3, 体验分类是数学上的常用处理问题的方法。

教学难点 正确理解分类的标准和按照一定的标准进行分类

知识重点 正确理解有理数的概念

教学过程(师生活动) 设计理念

探索新知 在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练 1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数 这个分类可视学生的程度确定是否有必要教学。

应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

小结与作业

课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业 1, 必做题:教科书第18页习题1.2第1题

2, 教师自行准备

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概

念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进

行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分

类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

最新初一上册的数学教案文案2

教学目标

1, 整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

2, 能区分两种不同意义的量,会用符号表示正数和负数;

3, 体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

教学难点 正确区分两种不同意义的量。

知识重点 两种相反意义的量

教学过程(师生活动) 设计理念

设置情境

引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生

活中仅有这些“以前学过的数”够用了吗?下面的例子

仅供参考.

师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是--,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…

问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

学生活动:思考,交流

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严

密性,但对于学生来说,更多

地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴

趣,所以创设如下的问题情境,以尽量贴近学生的实际.

这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

分析问题

探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

这些问题都必须要求学生理解.

教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.

这阶段主要是让学生学会正数和负数的表示.

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量. 这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

举一反三思维拓展 经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.

问题4:请同学们举出用正数和负数表示的例子.

问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.

能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

课堂练习 教科书第5页练习

小结与作业

课堂小结 围绕下面两点,以师生共同交流的方式进行:

1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;

2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。

本课作业 教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。

作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要

本课教育评注(课堂设计理念,实际教学效果及改进设想)

密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的.

负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子

或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实

存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例

子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.

这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,

体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见

的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。

最新初一上册的数学教案文案3

教学目标

1, 通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

2, 利用正负数正确表示相反意义的量(规定了指定方向变化的量)

3, 进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

教学难点 深化对正负数概念的理解

知识重点 正确理解和表示向指定方向变化的量

教学过程(师生活动) 设计理念

知识回顾与深化 回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?

问题1:有没有一种既不是正数又不是负数的数呢?

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分

界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是

零上7℃,最低温度是零下5℃时,就应该表示为+7℃

和-5℃,这里+7℃和-5℃就分别称为正数和负数 .

那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数?

问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入

负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。

所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即

可,不必深究.

分析问题

解决问题 问题3:教科书第6页例题

说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

类似的例子很多,如:

水位上升-3m,实际表示什么意思呢?

收人增加-10%,实际表示什么意思呢?

等等。

可视教学中的实际情况进行补充.

这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种

意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在

不必向学生提出.

巩固练习 教科书第6页练习

阅读思考

教科书第8页 阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

小结与作业

课堂小结 以问题的形式,要求学生思考交流:

1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

2,怎样用正负数表示具有相反意义的量?

(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)

本课作业 1, 必做题:教科书第7页习题1.1第3,6,7,8题

2, 选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指

定方向变化的量。

2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.

3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.

4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.

最新初一上册的数学教案文案4

教学目的:

掌握坐标变化与图形平移的关系;

发展学生的形象思维能力和数形结合意识。

教学重点:掌握图形平移前后的坐标变化规律,

教学难点:利用图形平移解决相关问题。

教学过程:

复习引入

1、什么叫平移?

把一个图形整体沿某一方向移动一定的距离,这种移动叫做平移。

2、平移有什么性质?

(1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

(2)新图形中的每一点,都是原图形中某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。

(3)问:一个点平移后的坐标会发生变化吗?

二、新授

1、平面直角坐标系内有一点a(-2,-3)

1将点a(-2,-3)向右平移5个单位后,得到点 a1的坐标是什么?

2将点a(-2,-3)向上平移4个单位后,得到点 a2的坐标是什么?

2、归纳:

在平面直角坐标系中,将点(-,y)向右(或左)平移a个单位长度,可以得到对应点(-+a,y)(或(--a,y));

将点(-,y)向上(或下)平移 b个单位长度,可以得到对应点(-,y+b)(或(-,y-b)) 。

简称:横移纵不变,纵移横不变。

3、问:线段ab两个端点的坐标分别是a(-5,3),b(-3,0).将线段ab两个端点的横坐标都加上6,纵坐标不变分别得到点a1 、 b1 , 连接a1 、b1 ,所得线段与原线段的大小和位置上有什么关系?

4、例题:三角形abc三个顶点的坐标分别是a(4,3)b(3,1)c(1,2)

(1)将三角形abc三个顶点的横坐标都减去6,纵坐标不变,分别得到点a1、b1、c1,依次连接各点,所得三角形a1 b1 c1与三角形a b c的大小、形状和位置上有什么关系?

(2)将三角形abc三个顶点的纵坐标都减去5,横坐标不变,分别得到点a2 、b2 、c2 ,依次连接各点,所得三角形a2b2c2与三角形abc的大小、形状和位置上有什么关系?

5、归纳:

在平面直角坐标系内:

如果把一个图形各个点的横坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;

如果把它各个点的纵坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向上(或向下 )平移 a个单位长度.

6、思考:如果将三角形abc三个顶点的横坐标都减去6,同时纵坐标都减去5,这时图形在哪儿?把它画出来!(有几种平移方法)

7、p53t1:图中三架飞机p、q、r保持编队飞行,分别写出它们的坐标。30秒后,飞机p飞到p`位置,飞机q、r飞到了什么位置?分别写出这三架飞机新位置的坐标。

8、课内练习:

1p53练习;

2口答:p53习题t2、3、4、6。

9、小结:

1在平面直角坐标系中,将点(-,y)向右(或左)平移a个单位长度,可以得到对应点(-+a,y)(或(--a,y));

将点(-,y)向上(或下)平移 b个单位长度,可以得到对应点(-,y+b)(或(-,y-b)) 。

2在平面直角坐标系内:

如果把一个图形各个点的横坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;

如果把它各个点的纵坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向上(或向下 )平移 a个单位长度.

10、作业:p55t7、8

最新初一上册的数学教案文案5

教学目标

1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行运算;

2.了解倒数概念,会求给定有理数的倒数;

3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运算,培养学生的运算能力。

教学建议

(一)重点、难点分析

本节教学的重点是熟练进行运算,教学难点 是理解法则。

1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。如:按法则1计算:原式;按法则2计算:原式。

2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。如;在有整除的情况下,应用第二个法则比较方便,如;在能整除的情况下,应用第二个法则比较方便,如,如写成就麻烦了。

(二)知识结构

(三)教法建议

1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。

2.关于0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。

3.理解倒数的概念

(1)根据定义乘积为1的两个数互为倒数,即:,则互为倒数。如:,则2与,-2与互为倒数。

(2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。如:求的倒数:计算,-2就是的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。如-2可以看作,分子、分母颠倒位置后为,就是的倒数。

(3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。如:,2与互为倒数,2与-2互为相反数。其次互为倒数的两个数符号相同,而互为相反数符号相反。如:-2的倒数是,-2的相反数是+2;另外0没有倒数,而0的相反数是0。

4.关于倒数的求法要注意:

(1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可.

(2)正数的倒数是正数,负数的倒数仍是负数.

(3)负倒数的定义:乘积是-1的两个数互为负倒数.

教学设计示例

一、素质教育目标

(一)知识教学点

1.了解有理数除法的定义.

2.理解倒数的意义.

3.掌握有理数除法法则,会进行运算.

(二)能力训练点

1.通过有理数除法法则的导出及运算,让学生体会转化思想.

2.培养学生运用数学思想指导思维活动的能力.

(三)德育渗透点

通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.

(四)美育渗透点

把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.

二、学法引导

1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语 并及时点拨,使学生主动发展思维和能力.

2.学生学法:通过练习探索新知→归纳除法法则→巩固练习

三、重点、难点、疑点及解决办法

1.重点:除法法则的灵活运用和倒数的概念.

2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.

3.疑点:对零不能作除数与零没有倒数的理解.

四、课时安排

1课时

五、教具学具准备

投影仪、自制胶片、彩粉笔.

六、师生互动活动设计

教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.

七、教学步骤

(一)创设情境,复习导入

师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题.

【教法说明】同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习.

(二)探索新知,讲授新课

1.倒数.

(出示投影1)

4×( )=1; ×( )=1; 0.5×( )=1;

0×( )=1; -4×( )=1; ×( )=1.

学生活动:口答以上题目.

【教法说明】在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.

师问:两个数乘积是1,这两个数有什么关系?

学生活动:乘积是1的两个数互为倒数.(板书)

师问:0有倒数吗?为什么?

学生活动:通过题目0×( )=1得出0乘以任何数都不得1,0没有倒数.

师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.

提出问题:根据以上题目,怎样求整数、分数、小数的倒数?

【教法说明】教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习.

(出示投影2)

求下列各数的倒数:

(1); (2); (3);

(4); (5)-5; (6)1.

学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.

2.

计算:8÷(-4).

计算:8×()=? (-2)

∴8÷(-4)=8×().

再尝试:-16÷(-2)=? -16×()=?

师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?

学生活动:同桌互相讨论.(一个学生回答)

师强调后板书:

[板书]

【教法说明】通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.

(三)尝试反馈,巩固练习

师在黑板上出示例题.

计算(1)(-36)÷9, (2)()÷().

学生尝试做此题目.

(出示投影3)

1.计算:

(1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

(4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

2.计算:

(1)()÷(); (2)(-6.5)÷0.13;

(3)()÷(); (4)÷(-1).

学生活动:1题让学生抢答,教师用复合胶片显示结果.2题在练习本上演示,两个同学板演(教师订正).

【教法说明】此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.

提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?

学生活动:分组讨论,1—2个同学回答.

[板书]

2.两数相除,同号得正,异号得负,并把绝对值相除.

0除以任何不等于0的数,都得0.

【教法说明】通过上组练习的结果,不难看出与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活运用这两种方法.

(四)变式训练,培养能力

回顾例1 计算:(1)(-36)÷9; (2)()÷().

提出问题:每个题目你想采用哪种法则计算更简单?

学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单.

(2)题仍用除以一个数等于乘以这个数的倒数较简单.

提出问题:-36:9=?;:()=?它们都属于除法运算吗?

学生活动:口答出答案.

(出示投影4)

例2 化简下列分数

(1); (2); (3)或3:(-36)

(4); (5).

例3 计算

(1)()÷(-6); (2)-3.5÷×();

(3)(-6)÷(-4)×().

学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演.

【教法说明】例2是检查学生对有理数除法法则的灵活运用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算.例3培养学生分析问题的能力,优化学生思维品质:

如在(1)()÷(-6)中.

根据方法①()÷(-6)=×()=.

根据方法②()÷(-6)=(24+)×=4+=.

让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算.(2)(3)小题也是如此.

(五)归纳小结

师:今天我们学习了及倒数的概念,回答问题:

1.的倒数是__________________();

2.;

3.若、同号,则;

若、异号,则;

若,时,则;

学生活动:分组讨论,三个学生口答.

【教法说明】对这节课全部知识点的回顾不是教师单纯地总结,而是让学生在思考回答的过程中自己把整节内容进行了梳理,并且上升到了用字母表示的数学式子,逐步培养学生用数学语言表达数学规律的能力.

八、随堂练习

1.填空题

(1)的倒数为__________,相反数为____________,绝对值为___________

(2)(-18)÷(-9)=_____________;

(3)÷(-2.5)=_____________;

(4);

(5)若,是;

(6)若、互为倒数,则;

(7)或、互为相反数且,则,;

(8)当时,有意义;

(9)当时,;

(10)若,,则,和符号是_________,___________.

2.计算

(1)-4.5÷()×;

(2)(-12)÷〔(-3)+(-15)〕÷(+5).

九、布置作业

(一)必做题:1.仿照例1、例2自编2道题,同桌交换解答.

2.计算:(1)()×()÷();

(2)-6÷(-0.25)×.

3.当,,时求的值.

(二)选做题:1.填空:用“>”“<”“=”号填空

(1)如果,则,;

(2)如果,则,;

(3)如果,则,;

(4)如果,则,;

2.判断:正确的打“√”错的打“×”

(1)( );

(2)( ).

3.(1)倒数等于它本身的数是______________.

(2)互为相反数的数(0除外)商是________________.

【教法说明】必做题为本节的重点内容,首先在这节课学习的基础上让同学仿照例题编题,学生也有这方面的能力,极大调动了学生积极性,提高了学生运用知识的能力.

选作题是对这节课重点内容的进一步理解和运用,为学有余力的学生提供了展示自己的机会.

十、板书设计