高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

初中数学三角形知识点总结整理

更新时间:2023-08-05 22:32:58 来源:高考在线

初二数学上册等腰三角形知识点总结

等腰三角形:有两条边相等的三角形叫等腰三角形.

相等的两条边叫腰;两腰的夹角叫顶角;顶角所对的边叫底;腰与底的夹角叫底角。

等腰三角形性质:(1)具有一般三角形的边角关系

(2)等边对等角;(3)底边上的高、底边上的中线、顶角平分线互相重合;

(4)是轴对称图形,对称轴是顶角平分线;(5)底边小于腰长的两倍并且大于零,腰长大于底边的一半;(6)顶角等于180°减去底角的两倍;(7)顶角可以是锐角、直角、钝角,而底角只能是锐角.

等腰三角形分类:可分为腰和底边不等的等腰三角形及等边三角形.

等边三角形性质:①具备等腰三角形的一切性质。

②等边三角形三条边都相等,三个内角都相等并且每个都是60°。

5. 等腰三角形的判定:

①利用定义;②等角对等边;

等边三角形的判定:

①利用定义:三边相等的三角形是等边三角形

②有一个角是60°的等腰三角形是等边三角形.

含30°锐角的直角三角形边角关系:在直角三角形中,30°锐角所对的直角边等于斜边的一半。

三角形边角的不等关系;长边对大角,短边对小角;大角对长边,小角对短边。

初一下册数学《三角形》知识点

一、目标与要求

1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。

2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。

3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。

4.三角形的内角和定理,能用平行线的性质推出这一定理。

5.能应用三角形内角和定理解决一些简单的实际问题。

二、重点

三角形内角和定理;

对三角形有关概念的了解,能用符号语言表示三条形。

三、难点

三角形内角和定理的推理的过程;

在具体的图形中不重复,且不遗漏地识别所有三角形;

用三角形三边不等关系判定三条线段可否组成三角形。

四、知识框架

五、知识点、概念总结

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类

3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7.高线、中线、角平分线的意义和做法

8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9.三角形内角和定理:三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余;

推论2三角形的一个外角等于和它不相邻的两个内角和;

推论3三角形的一个外角大于任何一个和它不相邻的内角;

三角形的内角和是外角和的一半。

10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11.三角形外角的性质

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

知识点梳理之直角三角形

一、三角函数

1.定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .

2. 特殊角的三角函数值:

0° 30° 45° 60° 90°

sinα

cosα

tgα /

ctgα /

3. 互余两角的三角函数关系:sin(90°-α)=cosα;…

4. 三角函数值随角度变化的关系

5.查三角函数表

二、解直角三角形

1. 定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

2. 依据:①边的关系:

②角的关系:A+B=90°

③边角关系:三角函数的定义。

注意:尽量避免使用中间数据和除法。

三、对实际问题的处理

1. 俯、仰角: 2.方位角、象限角: 3.坡度:

4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决