高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

高一数学教案集合文案

更新时间:2023-08-08 14:05:02 来源:高考在线

2021高一数学教案集合文案1

教学目的:

(1)使学生初步理解集合的概念,知道常用数集的概念及记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

教学重点:集合的基本概念及表示方法

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示

一些简单的集合

授课类型:新授课

课时安排:1课时

教具:多媒体、实物投影仪

内容分析:

1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础

把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念

集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明

教学过程:

一、复习引入:

1.简介数集的发展,复习公约数和最小公倍数,质数与和数;

2.教材中的章头引言;

3.集合论的创始人——康托尔(德国数学家)(见附录);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有关概念:

由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

定义:一般地,某些指定的对象集在一起就成为一个集合.

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合记作N,

(2)正整数集:非负整数集内排除0的集记作N-或N+

(3)整数集:全体整数的集合记作Z,

(4)有理数集:全体有理数的集合记作Q,

(5)实数集:全体实数的集合记作R

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括

数0

(2)非负整数集内排除0的集记作N-或N+Q、Z、R等其它

数集内排除0的集,也是这样表示,例如,整数集内排除0

的集,表示成Z-

3、元素对于集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作

4、集合中元素的特性

(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,

或者不在,不能模棱两可

(2)互异性:集合中的元素没有重复

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……

元素通常用小写的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的开口方向,不能把a∈A颠倒过来写

三、练习题:

1、教材P5练习1、2

2、下列各组对象能确定一个集合吗?

(1)所有很大的实数(不确定)

(2)好心的人(不确定)

(3)1,2,2,3,4,5.(有重复)

3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__

4、由实数x,-x,|x|,所组成的集合,最多含(A)

(A)2个元素(B)3个元素(C)4个元素(D)5个元素

5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:

(1)当x∈N时,x∈G;

(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G

证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,

则x=x+0-=a+b∈G,即x∈G

证明(2):∵x∈G,y∈G,

∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)

∴x+y=(a+b)+(c+d)=(a+c)+(b+d)

∵a∈Z,b∈Z,c∈Z,d∈Z

∴(a+c)∈Z,(b+d)∈Z

∴x+y=(a+c)+(b+d)∈G,

又∵=

且不一定都是整数,

∴=不一定属于集合G

四、小结:本节课学习了以下内容:

1.集合的有关概念:(集合、元素、属于、不属于)

2.集合元素的性质:确定性,互异性,无序性

3.常用数集的定义及记法

五、课后作业:

六、板书设计(略)

七、课后记:

八、附录:康托尔简介

发疯了的数学家康托尔(GeorgCantor,1845-1918)是德国数学家,集合论的

1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷

康托尔11岁时移居德国,在德国读中学

1862年17岁时入瑞士苏黎世大学,翌年入柏林大学,主修数学,1866年曾去格丁根学习一学期

1867年以数论方面的论文获博士学位

1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教授,1879年任教授

由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度

在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战

他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应

这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论

康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂

有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”

来自数学-们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神-症,被送进精神病医院

真金不怕火炼,康托尔的思想终于大放光彩

1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作

”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦

1918年1月6日,康托尔在一家精神病院去世

集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的兴趣

康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较完善的集合理论,为现代数学的发展打下了坚实的基础

康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础

从而解决17世纪牛顿(I.Newton,1642-1727)与莱布尼茨(G.W.Leibniz,1646-1716)创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789-1857)、魏尔斯特拉斯(K.Weierstrass,1815-1897)等人进行的微积分理论严格化所建立的极限理论

克隆尼克(L.Kronecker,1823-1891),康托尔的老师,对康托尔表现了无微不至的关怀

他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久

他甚至在柏林大学的学生面前公开攻击康托尔

横加阻挠康托尔在柏林得到一个薪金较高、声望更大的教授职位

使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折

法国数学家彭加勒(H.Poi-ncare,1854-1912):我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西

集合论是一个有趣的“病理学的情形”,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了

德国数学家魏尔(C.H.Her-mannWey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾

菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想

数学家H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交

从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去

变得很自卑,甚至怀疑自己的工作是否可靠

他请求哈勒大学-把他的数学教授职位改为哲学教授职位

健康状况逐渐恶化,1918年,他在哈勒大学附属精神病院去世

流星埃.伽罗华(E.Galois,1811-1832),法国数学家

伽罗华17岁时,就着手研究数学中最困难的问题之一一般π次方程求解问题

许多数学家为之耗去许多精力,但都失败了

直到1770年,法国数学家拉格朗日对上述问题的研

究才算迈出重要的一步伽罗华在前人研究成果的基础上,利用群论的方法从系统结构的整体上彻底解决了根式解的难题他从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换群及其子群结构的分析上同时创立了具有划时代意义的数学分支——群论,数学发展作出了重大贡献1829年,他把关于群论研究所初步结果的第一批论文提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了以参加科学院的数学大奖评选,论文寄给当时科学院终身秘书J.B.傅立叶,但傅立叶在当年5月就去世了,在他的遗物中未能发现伽罗华的手稿1831年1月伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院这篇论文是伽罗华关于群论的重要著作当时的数学家S.K.泊松为了理解这篇论文绞尽了脑汁尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832年5月30日,临死的前一夜,他把他的重大科研成果匆忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类1832年5月31日离开了人间死因参加无意义的决斗受重伤1846年,他死后14年,法国数学家刘维尔着手整理伽罗华的重大创作后,首次发表于刘维尔主编的《数学杂志》

2021高一数学教案集合文案2

案例背景:

对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

案例叙述:

(一).创设情境

(师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

(提问):什么是指数函数?指数函数存在反函数吗?

(学生):是指数函数,它是存在反函数的.

(师):求反函数的步骤

(由一个学生口答求反函数的过程):

由得.又的值域为,

所求反函数为.

(师):那么我们今天就是研究指数函数的反函数-----对数函数.

(二)新课

1.(板书)定义:函数的反函数叫做对数函数.

(师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?

(教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)

(学生)对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件.

(在此基础上,我们将一起来研究对数函数的图像与性质.)

2.研究对数函数的图像与性质

(提问)用什么方法来画函数图像?

(学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.

(学生2)用列表描点法也是可以的。

请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.

(师)由于指数函数的图像按和分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况和,并分别以和为例画图.

具体操作时,要求学生做到:

(1)指数函数和的图像要尽量准确(关键点的位置,图像的变化趋势等).

(2)画出直线.

(3)的图像在翻折时先将特殊点对称点找到,变化趋势由靠近轴对称为逐渐靠近轴,而的图像在翻折时可提示学生分两段翻折,在左侧的先翻,然后再翻在右侧的部分.

学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

和的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

教师画完图后再利用电脑将和的图像画在同一坐标系内,如图:

然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

3.性质

(1)定义域:

(2)值域:

由以上两条可说明图像位于轴的右侧.

(3)图像恒过(1,0)

(4)奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于轴对称.

(5)单调性:与有关.当时,在上是增函数.即图像是上升的

当时,在上是减函数,即图像是下降的.

之后可以追问学生有没有值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

当时,有;当时,有.

学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

对图像和性质有了一定的了解后,一起来看看它们的应用.

(三).简单应用

1.研究相关函数的性质

例1.求下列函数的定义域:

(1)(2)(3)

先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.

2.利用单调性比较大小

例2.比较下列各组数的大小

(1)与;(2)与;

(3)与;(4)与.

让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.

三.拓展练习

练习:若,求的取值范围.

四.小结及作业

案例反思:

本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.

2021高一数学教案集合文案3

教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性.了解有限集、无限集、空集概念,

教学重点:集合概念、性质;“∈”,“?”的使用

教学难点:集合概念的理解;

课型:新授课

教学手段:

教学过程:

一、引入课题

军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。集合理论是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。(参看阅教材中读材料P17)。

下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。

二、新课教学

“物以类聚,人以群分”数学中也有类似的分类。

如:自然数的集合0,1,2,3,……

如:2x-1>3,即x>2所有大于2的实数组成的集合称为这个不等式的解集。

如:几何中,圆是到定点的距离等于定长的点的集合。

1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,…

集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…

2、元素与集合的关系

a是集合A的元素,就说a属于集合A,记作a∈A,

a不是集合A的元素,就说a不属于集合A,记作a?A

思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,

进而讲解下面的问题。

例1:判断下列一组对象是否属于一个集合呢?

(1)小于10的质数(2)数学家(3)中国的直辖市(4)maths中的字母

(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2>x+3的全体实数

(9)方程的实数解

评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。

3、集合的中元素的三个特性:

1.元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

2.元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。比如:book中的字母构成的集合

3.元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

集合元素的三个特性使集合本身具有了确定性和整体性。

4、数的集简称数集,下面是一些常用数集及其记法:

非负整数集(即自然数集)记作:N有理数集Q

正整数集N-或N+实数集R

整数集Z

5、集合的分类原则:集合中所含元素的多少

①有限集含有限个元素,如A={-2,3}

②无限集含无限个元素,如自然数集N,有理数

③空集不含任何元素,如方程x2+1=0实数解集。专用标记:Φ

三、课堂练习

1、用符合“∈”或“?”填空:课本P15练习惯1

2、判断下面说法是否正确、正确的在()内填“√”,错误的填“×”

(1)所有在N中的元素都在N-中()

(2)所有在N中的元素都在Z中()

(3)所有不在N-中的数都不在Z中()

(4)所有不在Q中的实数都在R中()

(5)由既在R中又在N-中的数组成的集合中一定包含数0()

(6)不在N中的数不能使方程4x=8成立()

四、回顾反思

1、集合的概念

2、集合元素的三个特征

其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.

“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.

3、常见数集的专用符号.

五、作业布置

1.下列各组对象能确定一个集合吗?

(1)所有很大的实数

(2)好心的人

(3)1,2,2,3,4,5.

2.设a,b是非零实数,那么可能取的值组成集合的元素是

3.由实数x,-x,|x|,所组成的集合,最多含()

(A)2个元素(B)3个元素(C)4个元素(D)5个元素

4.下列结论不正确的是()

A.O∈NB.QC.OQD.-1∈Z

5.下列结论中,不正确的是()

A.若a∈N,则-aNB.若a∈Z,则a2∈Z

C.若a∈Q,则|a|∈QD.若a∈R,则

6.求数集{1,x,x2-x}中的元素x应满足的条件;

2021高一数学教案集合文案4

教材分析

圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。

教学目标

1. 知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。

2. 过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。

3. 情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。

教学重点难点

以及措施

教学重点:圆的标准方程理解及运用

教学难点:根据不同条件,利用待定系数求圆的标准方程。

根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。

学习者分析

高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。

教法设计

问题情境引入法 启发式教学法 讲授法

学法指导

自主学习法 讨论交流法 练习巩固法

教学准备

ppt课件 导学案

教学环节

教学内容

教师活动

学生活动

设计意图

情景引入

回顾复习

(2分钟)

1.观赏生活中有关圆的图片

2.回顾复习圆的定义,并观看圆的生成flash动画。

提问:直线可以用一个方程表示,那么圆可以用一个方程表示吗?

教师创设情景,引领学生感受圆。

教师提出问题。引导学生思考,引出本节主旨。

学生观赏圆的图片和动画,思考如何表示圆的方程。

生活中的图片展示,调动学生学习的积极性,让学生体会到园在日常生活中的广泛应用

自主学习

(5分钟)

1.介绍动点轨迹方程的求解步骤:

(1)建系:在图形中建立适当的坐标系;

(2)设点:用有序实数对(x,y)表示曲 线上任意一点M的坐标;

(3)列式:用坐标表示条件P(M)的方程 ;

(4)化简:对P(M)方程化简到最简形式;

2.学生自主学习圆的方程推导,并完成相应学案内容,

教师介绍求轨迹方程的步骤后,引导学生自学圆的标准方程

自主学习课本中圆的标准方程的推导过程,并完成导学案的内容,并当堂展示。

培养学生自主学习,获取知识的能力

合作探究(10分钟)

1.根据圆的标准方程说明确定圆的方程的条件有哪些?

2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的判断方法:

(1)点在圆上

(2)点在圆外

(3)点在圆内

教师引导学生分组探讨,从旁巡视指导学生在自学和探讨中遇到的问题,并鼓励学生以小组为单位展示探究成果。

学生展开合作性的探讨,并陈述自己的研究成果。

通过合作探究和自我的展示,鼓励学生合作学习的品质

当堂训练(18分钟)

1.求下列圆的圆心坐标和半径

C1: x2+y2=5

C2: (x-3)2+y2=4

C3: x2+(y+1)2=a2(a≠0)

2. 以C(4,-6)为圆心,半径等于3的圆的标准方程

3. 设圆(x-a)2+(y-b)2=r2

则坐标原点的位置是( )

A.在圆外 B.在圆上

C.在圆内 D.与a的取值有关

4.写出下列各圆的标准方程(1)圆心在原点,半径等于5

(2)经过点P(5,1),圆心在点C(6,-2);

(3)以A(2,5),B(0,-1)为直径的圆.

5.下列方程分别表示什么图形

(1) x2+y2=0

(2) (x-1)2 =8-(y+2)2

(3) 《圆的标准方程》教学设计-贾伟

6.巩固提升:已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆C的标准方程并作图

指导学生就不同条件下给出的圆心和半径关系,求解圆的标准方程这两个要素展开训练。

学生自主开展训练,并纠正学习中所遇到的问题

巩固所学知识,并查缺补漏。

回顾小结

(1分钟)

1.你学到了哪些知识?

2.你掌握了哪些技能?

3.你体会到了哪些数学思想?

采用提问的形式帮助学生回顾和分析本节所学。

学生思考并从知识、技能和思想方法上回顾总结。

培养学生归纳总结能力

作业布置

(1分钟)

课本87页习题2-2

A组的第1道题

布置训练任务

标记并完成相应的任务

检测学生掌握知识情况。

教学反思

本节教学主要遵循“回-导-学-展-讲-练-结”的高效课堂教学模式,遵循学生学习的主体地位,鼓励学生自主思考和探讨。

教学中要积极鼓励学生多思考总结,在判断点与圆的位置关系中,要遵从学生个性化的发展思路,鼓励学生创造性的解决问题。

2021高一数学教案集合文案5

一、教学目标:

1.知识与技能:理解并掌握等比数列的性质并且能够初步应用。

2.过程与方法:通过观察、类比、猜测等推理方法,提高我们分析、综合、抽象、

概括等逻辑思维能力。

3.情感态度价值观:体会类比在研究新事物中的作用,了解知识间存在的共同规律。

二、重点:等比数列的性质及其应用。

难点:等比数列的性质应用。

三、教学过程。

同学们,我们已经学习了等差数列,又学习了等比数列的基础知识,今天我们继续学习等比数列的性质及应用。我给大家发了导学稿,让大家做了预习,现在找同学对照下面的表格说说等差数列和等比数列的差别。

数列名称 等差数列 等比数列

定义 一个数列,若从第二项起 每一项减去前一项之差都是同一个常数,则这个数列是等差数列。 一个数列,若从第二项起 每一项与前一项之比都是同一个非零常数,则这个数列是等比数列。

定义表达式 an-an-1=d (n≥2)

(q≠0)

通项公式证明过程及方法

an-an-1=d; an-1-an-2=d,

…a2-a1=d

an-an-1+ an-1-an-2+…+a2-a1=(n-1)d

an=a1+(n-1)-d

累加法 ; …….

an=a1q n-1

累乘法

通项公式 an=a1+(n-1)-d an=a1q n-1

多媒体投影(总结规律)

数列名称 等差数列   等比数列

定 义 等比数列用“比”代替了等差数列中的“差”

定 义

达 式 an-an-1=d (n≥2)

通项公式证明

迭加法 迭乘法

通 项 公 式

加-乘

乘—乘方

通过观察,同学们发现:

? 等差数列中的 减法、加法、乘法,

等比数列中升级为 除法、乘法、乘方.

四、探究活动。

探究活动1:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习1;等差数列的性质1;猜想等比数列的性质1;性质证明。

练习1 在等差数列{an}中,a2= -2,d=2,求a4=_____..(用一个公式计算) 解:a4= a2+(n-2)d=-2+(4-2)-2=2

等差数列的性质1: 在等差数列{an}中, a n=am+(n-m)d.

猜想等比数列的性质1 若{an}是公比为q的等比数列,则an=am-qn-m

性质证明 右边= am-qn-m= a1qm-1qn-m= a1qn-1=an=左边

应用 在等比数列{an}中,a2= -2 ,q=2,求a4=_____. 解:a4= a2q4-2=-2-22=-8

探究活动2:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习2;等差数列的性质2;猜想等比数列的性质2;性质证明。

练习2 在等差数列{an}中,a3+a4+a5+a6+a7=450,则a2+a8的值为 . 解:a3+a4+a5+a6+a7=(a3+ a7)+(a4+ a6)+ a5= 2a5+2a5+a5=5 a5=450 a5=90 a2+a8=2×90=180

等差数列的性质2: 在等差数列{an}中, 若m+n=p+q,则am+an=ap+aq 特别的,当m=n时,2 an=ap+aq

猜想等比数列的性质2 在等比数列{an} 中,若m+n=s+t则am-an=as-at 特别的,当m=n时,an2=ap-aq

性质证明 右边=am-an= a1qm-1 a1qn-1= a12qm+n-1= a12qs+t-1=a1qs-1 a1qt-1= as-at=左边 证明的方向:一般来说,由繁到简

应用 在等比数列{an}若an>0,a2a4+2a3a5+a4a6=36,则a3+a5=_____. 解:a2a4+2a3a5+a4a6= a32+2a3a5+a52=(a3+a5)2=36

由于an>0,a3+a5>0,a3+a5=6

探究活动3:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习3;等差数列的性质3;猜想等比数列的性质3;性质证明。

练习3 在等差数列{an}中,a30=10,a45=90,a60=_____. 解:a60=2- a45- a30=2×90-10=170

等差数列的性质3: 若an-k,an,an+k是等差数列{an}中的三项, 则这些项构成新的等差数列,且2an=an-k+an+k

an即时an-k,an,an+k的等差中项

猜想等比数列的性质3 若an-k,an,an+k是等比数列{an}中的三项,则这些项构成新的等比数列,且an2=an-k-an+k

an即时an-k,an,an+k的等比中项

性质证明 右边=an-k-an+k= a1qn-k-1 a1qn+k-1= a12qn-k-1+n+k-1= a12q2n-2=(a1qn-1) 2t=an2左边 证明的方向:由繁到简

应用 在等比数列 {an}中a30=10,a45=90,a60=_____.

解:a60= = =810

应用 等比数列{an}中,a15=10, a45=90,a60=________. 解:

a30= = = 30

A60=

探究活动4:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习4;等差数列的性质4;猜想等比数列的性质4;性质证明。

练习4 设数列{an} 、{ bn} 都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=_____. 解:a5+b5=2(a3+b3)-(a1+b1)=2-21-7=35

等差数列的性质4: 设数列{an} 、{ bn} 是公差分别为d1、d2的等差数列,则数列{an+bn}是公差d1+d2的等差数列 两个项数相同的等差数列的和任然是等差数列

猜想等比数列的性质4 设数列{an} 、{ bn} 是公比分别为q1、q2的等比数列,则数列{an-bn}是公比为q1q2的等比数列 两个项数相同的等比数列的和比一定是等比数列,两个项数相同的等比数列的积任然是等比数列。

性质证明 证明:设数列{an}的首项是a1,公比为q1; {bn}的首项为b1,公比为q2,设cn=an?bn那么数列{an?bn} 的第n项与第n+1项分别为:

应用 设数列{an} 、{ bn} 都是等比数列,若a1b1=7,a3b3=21,则a5b5=_____. 解:由题意可知{an?bn}是等比数列,a3b3是a1b1;a5b5的等比中项。

由(a3b3)2= a1b1- a5b5 212= 7- a5b5 a5b5=63

(四个探究活动的设计充分尊重学生的主体地位,以学生的自主学习,自主探究为主题,以教师的指导为辅,开展教学活动)

五、等比数列具有的单调性

(1)q<0,等比数列为 摆动 数列, 不具有 单调性

(2)q>0(举例探讨并填表)

a1 a1>0 a1<0

q的范围 0 q=1 q>1 0 q=1 q>1

{an}的单调性 单调递减 不具有单调性 单调递增 单调递增 不具有单调性 单调递减

让学生举例说明,并查验有多少学生填对。(真确评价)

六、课堂练习:

1、已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6等于(  ).

A. B.?7  C.?6  D.?

解析:由已知得a32?=5,? a82=10,

∴a4a5a6=a53?= = =5 ?.

答案:A

2、已知数列1,a1,a2,4是等比数列,则a1a2=   .

答案:4

3、 +1与 -1两数的等比中项是(  ).

A.1  B.?-1  C.?   D.±1?

解析:根据等比中项的定义式去求。答案:选D

4、已知等比数列{an}的公比为正数,且a3a9=2 ? ,a2=1,则a1等于( ).

A.2  B.?   C.?   D.?

解析:∵a3a9= =2 ?,∴? =q2=2,∵q>0,∴q= ?.故a1= ?= ?= ?.

答案:C

5练习题:三个数成等比数列,它们的和等于14,

它们的积等于64,求这三个数。

分析:若三个数成等差数列,则设这三个数为a-d,a,a+d.

由类比思想的应用可得,若三个数成等比数列,则设这三个数

为: 根据题意

再由方程组可得:q=2 或

既这三个数为2,4,8或8,4,2。

七、小结

本节课通过观察、类比、猜测等推理方法,研究等比数列的性质及其应用,从而培养和提高我们综合运用分析、综合、抽象、概括,逻辑思维解决问题的能力。

八、

§3.1.2等比数列的性质及应用

性质一:若{an}是公比为q的等比数列,则an=am-qn-m

性质二:在等比数列{an} 中,若m+n=s+t则am-an=as-at

性质三:若an-k,an,an+k是等比数列{an}中的三项,则这些

项构成新的等比数列,且 an2=an-k-an+k

性质四:设数列{an} 、{ bn} 是公比分别为q1、q2的等比

数列,则数列{an-bn}是公比为q1q2的等比数列

板书设计

九、反思