人教版初一上册数学知识点总结整理
1.有理数:
(1)凡能写成 形式的数,都是有理数,整数和分数统称有理数.
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;
(2)有理数的分类: ① ②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数? 0和正整数; a>0 ? a是正数; a<0 ? a是负数;
a≥0 ? a是正数或0 ? a是非负数; a≤ 0 ? a是负数或0 ? a是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0 ? a+b=0 ? a、b互为相反数.
(4)相反数的商为-1.
(5)相反数的绝对值相等
4.绝对值:
(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为: 或 ;
(3) ; ;
(4) |a|是重要的非负数,即|a|≥0;
5.有理数比大小:
(1)正数永远比0大,负数永远比0小;
(2)正数大于一切负数;
(3)两个负数比较,绝对值大的反而小;
(4)数轴上的两个数,右边的数总比左边的数大;
(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。
6.倒数:乘积为1的两个数互为倒数;
注意:0没有倒数; 若ab=1? a、b互为倒数; 若ab=-1? a、b互为负倒数.
等于本身的数汇总:
相反数等于本身的数:0
倒数等于本身的数:1,-1
绝对值等于本身的数:正数和0
平方等于本身的数:0,1
立方等于本身的数:0,1,-1.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .(简便运算)
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .
13.有理数乘方的法则:(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;
14.乘方的定义:(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 ? a=0,b=0;
(4)据规律 底数的小数点移动一位,平方数的小数点移动二位.
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
初一上学期数学知识点归纳总结
第二章整式
1.整式:单项式和多项式的统称叫整式。
2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。
3.系数;一个单项式中,数字因数叫做这个单项式的系数。
4。次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
5.多项式:几个单项式的和叫做多项式。
6.项:组成多项式的每个单项式叫做多项式的项。
7.常数项:不含字母的项叫做常数项。
8.多项式的次数:多项式中,次数的项的次数叫做这个多项式的次数。
9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
(二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。
1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变
初一下册数学知识点总结北师大版
一、同底数幂的乘法
(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
b)指数是1时,不要误以为没有指数;
c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
二、幂的乘方与积的乘方
三、同底数幂的除法
(1)运用法则的前提是底数相同,只有底数相同,才能用此法则
(2)底数可以是具体的数,也可以是单项式或多项式
(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负
四、整式的乘法
1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。
五、平方差公式
表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式
公式运用
可用于某些分母含有根号的分式:
1/(3-4倍根号2)化简:
六、完全平方公式
完全平方公式中常见错误有:
①漏下了一次项
②混淆公式
③运算结果中符号错误
④变式应用难于掌握。
七、整式的除法
1、单项式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。
相关文章
西藏高考各个大学录取分数线排名表和最低位次2024-06-13 17:51:39
内蒙古高考各个大学录取分数线排名表和最低位次2024-06-13 17:50:37
青海高考各个大学录取分数线排名表和最低位次2024-06-13 17:49:36
新疆高考各个大学录取分数线排名表和最低位次2024-06-13 17:48:39
云南高考各个大学录取分数线排名表和最低位次2024-06-13 17:47:34
山西高考各个大学录取分数线排名表和最低位次2024-06-13 17:46:23
宁夏高考各个大学录取分数线排名表和最低位次2024-06-13 17:45:24
陕西高考各个大学录取分数线排名表和最低位次2024-06-13 17:44:26
最新七年级下册数学暑假作业答案2023-08-08 15:12:05
九年级物理教案设计范文2023-08-08 03:45:07
愚人节的起源是什么2023-08-13 21:49:21
数学教师教学研修总结范文2023-08-15 19:48:57
五年级数学暑假作业归纳整理2023-08-02 22:10:46
初中老师的数学教学反思范文五篇2023-08-08 16:06:08
小学数学上册二年级教案最新例文2023-08-08 22:23:05
新版北师大版二年级下册数学教案最新模板2023-08-03 02:14:11
最新一年级数学跷跷板教案模板2023-08-05 17:37:25