高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

小学数学有效的考试答题技巧大全

更新时间:2023-08-07 11:28:40 来源:高考在线

小学数学各类题的答题技巧

一、选择题的解法:

选择题得分关键是考生能否精确、迅速地解答。数学选择题的求解有两种思路:一是从题干出发考虑,探求结果;二是题干和选择的分支联合考虑或从选择的分支出发探求是否满足题干条件,由于答案在四个中找一个,随机分一定要拿到。选择题解题的基本原则是:"充分利用选择题的特点,小题尽量不要大做"。

二、填空题的解法:

填空题答案有着简短、明确、具体的要求,解题基本原则是小题大做别马虎,特别是解的个数和形式是否满足题意,有没有漏解和不满足题目要求的解要认真区别对待。数学填空题的分值增加许多,其得分情况对考试成绩大有影响,所以答题时要给予足够的精力和时间,填空的解法主要有:直接求解法、特例求解法、数形结合法,解题时灵活应用。

三、解答题的解法:

解答题得分的关键是考生能否对所答题目的每个问题有所取舍,一般来说在解答题中总是有一定数量的数学难题(通常在每题的后半部分和最后一、两题中),如果不能判别出什么是自己能做的题,而在不会做的题上花太多的时间和精力,得分肯定不会高。解答题解题时要注意:书写规范,各式各样的题型有各自不同的书写要求,答题的形式对了基本分也就得到了。审题清晰,题读懂了解题才能得到分,要快速在短时间内审清题意,知道题目表达的意思,题目要解决的是什么问题,关键的字词是什么,特殊的情形有没有,不能一知半解,做了一半才发现漏了条件推翻重来,费了精力影响情绪。

附加题一般有2至3问,第一问,其实不难,你要有信心做出来,一般也就是个简单的理论的'应用,不会刁难你,所以,你要作出来。如果有第三问,那么第二问多半是中继作用,就是利用第一问的结论,然后第三问有要用到它自己。这一问,比较难一点,但是,如果你时间允许,还是可以做出来的。

解答题中,由于是按步给分,应特别注意过程步骤的严谨和规范,追求"表达的准确、考虑的周密、书写的规范、语言的科学",写清得分点,清楚地呈现自己的思维层次。否则会做的题目若不注意准确表达和规范书写,常常会被"分段扣分",适当的文字说明,不能只列几个式子或单纯的结论。解答题应注意"大题小做,大题细作"。另外,注意 "快慢结合,合理把握时间"。慢主要体现在审题方面,看题要清,审题要透彻,合理方面脚步,防止错看,漏看,从一定义上说:"成在审题,败在审题"。快主要是解答要快速准确,一步到位,尽量减少反工检查的时间。总体时间的把握上,在保证选填的基础上,要留出充分的时间放在解答题上,保证充分的思维时空,另外还应预留时间对把握不足的题目进行复查。

小学数学答题技巧

各类型分别对待,难题尽量多得分

在实际的答题过程中,考生要掌握好应考技巧和答题策略,做好高考取胜准备。尚老师介绍,这首先要求考生在考前要做好心态调整,对高考要有信心,考试时要认真审题,快速书写,稳中取胜,力争中低档题不失分,难题尽可能多得分。对于占据数学试卷主力的选择题、填空题和解答题,尚老师分别给出了答题思路及具体注意事项。

选择题

数学选择题试题多,考查面广,不仅要求考生有正确的分辨能力,更要有较快的解题速度。为此,需要研究解答选择题的一些技巧。总的来说,选择题属于小题,解题的原则是“小题巧解,不择手段”。可以考虑一下几种解题方法:

(1)直接法:从题设的条件出发,利用已知条件、相关公式、公理、定理、法则,通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支。

(2)特殊法:就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特殊法解选择题时,特殊取得愈简单、愈特殊愈好。常用的特例有特殊数值、特殊图形、特殊数列、特殊函数、特殊角、特殊位置等。

(3)图象法:在解答选择题的过程中,可以先根据题意,做出草图,然后按照图形的作法、形状、位置、性质,借助图形的直观性作出正确判断,这种解法贯穿数形结合思想,每年高考均有很多选择题(也有填空题、解答题)可以用数形结合思想解决,既简单又迅速。

(4)验证法:就是将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法。在运用验证法解题时,若能根据题意确定代入顺序,则能较大提高解题速度。

解选择题的方法很多,上面仅列举了几种常用的方法,对于选择题,一定要小题小做,小题巧做,切忌小题大做。“不择手段,多快好省”是解选择题的基本宗旨。

填空题

填空题虽小,但跨度大,覆盖面广,形式灵活,突出考查学生准确、严谨、全面、灵活运用知识的能力,和基本运算能力,填空题缺少选项提供的目标信息,结果正确与否难以判断,一步失误,全题零分,怎样才能做到“正确、合理、迅速”地解答填空题为做后面的题赢得宝贵的时间呢?这要求考生做到:快—运算要快,力戒小题大做;稳—变形要稳,不可操之过急;全—答案要全,力避残缺不全;活—解题要活,不要生搬硬套;细—审题要细,不能粗心大意。

(1)直接法:直接从題设条件出发,选用有关定义、定理、公式等,直接进行求解,得出结论,在求解过程中应注意准确计算,讲究技巧,这是解填空题最常用的方法,使用时,要善于“透过现象抓本质”

(2)特例法:包括特殊值法、特殊函数法、特殊位置法、特殊点法、特殊数列法、特殊模型法等,当填空题提供的信息暗示答案唯一或其值为定值时,可选取符合条件的特殊情形进行处理得到结论。

(3)推理法:归纳与类比推理问题越来越多地出现在考题中,尤以数列问题的归纳、平面到空间的类比最多,挖掘类比源的性质,正确类比相关的结论,而相应类比的结论证明比较难,由于常以填空的题型出现,也就弱化了结论的“刨根问底”,但有些结论需要验证其正确性。

解答题

做解答题总的指导原则是:认真读题,仔细分析,通法解题,分步表述,逻辑简明,书写规范,而且数字语言要规范。还要注意以下几点:

(1)审题时,一定把题读完再动笔做题。当题意不清时,特别是应用题,要把题多读几遍,然后“联系”分析,即“题目的上、下联系,数学问题和实际问题的联系”,注意挖掘题目的隐含条件、等价条件等。

(2)做解答题一般强调通法解题:即最一般、最常用、最熟练的方法。书写时既要简明、规范,又要抓住“得分点”。

(3)注意缺步解答、跳步解答。做后面小问时要经常思考“能否用前面小题的结论和方法”。

数学解题的有效技巧

1、实物演示法

利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。

二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。

特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。

所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。这样可以有效地提高课堂教学效率,提升学生的学习成绩。

2、图示法

借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。

在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。

例1:把一根木头锯成3段需要24分钟,锯成6段需要多少分钟?(图略)

思维方法是:图示法。

思维方向是:锯几次,每次用几分钟。

思路是:锯3段锯了几次,每次用几分钟,锯6段锯了几次,需要多少分钟。

例2:判断等腰三角形中,点D是底边BC的中点,图甲的面积比图乙的面积大,图甲的周长比图乙的周长长。(图略)

思维方法:图示法。

思维方向:先比较面积,再比较周长。

思路:作条辅助线。图甲占的面积大,图乙所占面积小,所以“图甲的面积比图乙的面积大”是正确的。线段AD比曲线AD短,所以“图甲的周长比图乙的周长长”是错误的。

3、列表法

运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。

用列表法解决传统数学问题:鸡兔同笼问题。制作三个表格:第一张表格是逐一举例法,根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条……这样逐一列举,直至寻找到所求的答案;第二张表格是列举了几个以后发现了只数与腿数的规律,从而减少了列举的次数;第三张表格是从中间开始列举,由于鸡与兔共20只,所以各取10只,接着根据实际的数据情况确定列举的方向。

4、探索法

按照一定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法。我国著名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。“学习要以探究”,是新课程的基本理念之一。人们在难以把问题转化为简单的、基本的、熟悉的、典型的问题时,常常采取的一种好方法就是探究、尝试。

第一,探究方向要准确,兴趣要高涨,切忌胡乱尝试或形式主义的探究。

例如,教学“比例尺”时,教师创设“学生出题考老师”的教学情境,师:“现在我们考试好不好?”学生一听:很奇怪,正当学生疑惑之时,教师说:“今天改变过去的考试方法,由你们出题考老师,愿意吗?”学生听后很感兴趣。教师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告诉你们这两地之间的实际距离,相信吗?”于是学生纷纷上台度量、报数,教师都一个接一个地回答对应的实际距离。学生这时更感到奇怪,异口同声地说:“老师您快告诉我们吧,您是怎样算的?”教师说:“其实呀,有一位好朋友在暗中帮助老师,你们知道它是谁吗?想认识它吗?”于是引出所要学习的内容“比例尺”。

第二,定向猜测,反复实践,在不断分析、调整中寻找规律。

例3:找规律填数。

(1)1、4、 、10、13、 、19;

(2)2、8、18、32、 、72、 。

第三,独立探究与合作探究结合。独立,有自由的思维时空;合作,可以知识上互补,方法上互相借鉴,不时还能碰撞出智慧的火花。

小学数学教学活动中,教师应尽量创设让学生去探究的情景,创造让学生去探究的机会,鼓励有探究精神和习惯的学生。

5、观察法

通过大量具体事例,归纳发现事物的一般规律的方法叫做观察法。巴浦洛夫说:“应当先学会观察,不学会观察永远当不了科学家。”

小学数学“观察”的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系。

如:观察一组算式:25×4=4×25,62×11=11×62,100×6=6×100……归纳出乘法交换率:在乘法算式里,交换两个因数的位置,积不变。

“观察”的要求: 第一,观察要细致、准确。

例4:找出下列各题错在哪里,并改正。

(1)25×16=25×(4×4)=(25×4)×(25×4);

(2)18×36+18×64=(18+18)×(36+64)

例5:直接写出下列各题的得数:

(1)3.6+6.4=

(2)3.6+6.04=

(3)125×57×0.04(4)(351-37-13)÷5=

第二,科学观察。

科学观察渗透了更多的理性因素,它是有目的,有计划地察看研究对象。比如,在教学长方体的认识时,要做到“有序”观察:

(1)面--形状、个数、面与面之间的关系;

(2)棱--棱的形成、条数、棱与棱之间的关系(相对的棱相等;相对的棱有四条;长方体的棱可以分为三组);

(3)顶点--顶点的形成、个数,认识顶点的一个重要作用是引出长方体长、宽、高的概念。

第三,观察必定与思考结合。

这是一年级下学期的一道思考题,如果只观察不思考,这道题目让干什么就不知道。

6、典型法

针对题目去联想已经解过的典型问题的解题规律,从而找出解题思路的方法叫做典型法。典型是相对于普遍而言的。解决数学问题,有些需要用一般方法,有些则需要用特殊(典型)方法。比如,归一、倍比和归总算法、行程、工程、消同求异、平均数等。

运用典型法必须注意:

(1)要掌握典型材料的关键及规律。

例6:已知爸爸比儿子大30岁,爸爸今年的年龄正好是儿子的7倍。爸爸、儿子今年分别是多少岁?关键点在:爸爸比儿子大30岁,爸爸的年龄比儿子多几倍。典型题都有典型解法,要想真正学好数学,即要理解和掌握一般思路和解法,还要学会典型解法。

(2)熟悉典型材料,并能敏捷地联想到所适用的典型,从而确定所需要的解题方法。

例7:见到“某城市有一条公共汽车线路,长16500米,平均每隔500米设一个车站。这条线路需要设多少个车站?”这样题目,就应该联想到上面所讲到的“锯木头用多少分钟”的典型问题。

(3)典型和技巧相联系。

例8:甲乙两个工程队共有82人,如果从乙队调8人到甲队,两队人数正好相等。甲乙两队原来各有多少人?这题目的技巧:调前、调后两队总人数没变。先算调后各队人数,再算原来各队人数。

7、放缩法

通过对被研究对象的放缩估计来解决问题的.方法叫做放缩法。放缩法灵活、巧妙,但有赖于知识的拓展能力及其想象能力。

例9:求12和9的最小公倍数。求两个数的最小公倍数一般的方法是“短除式”方法,它是根据这两个数的质因数情况来求出它们的最小公倍数的。但也有两个典型方法:一是“如果两个数是互质数,那么这两个数的最小公倍数就是它们的乘积”;二是“如果大数是小数的倍数,那么这两个数的最小公倍数就是大数”。现在我们根据典型方法二,进行扩展运用,放大“大数”来求12和9的最小公倍数。

12不是9的倍数,就把它放大2倍,得24,仍然不是9的倍数,放大3倍,得36,36是9的倍数,那么,12和9的最小公倍数就是36。这种方法的关键点在于,如果大数不是小数的倍数,就把大数翻倍,但一定从2倍开始,如果一下子扩大6倍,得数是它们的公倍数,而不是最小的了。

例10:期末考试,小刚的语文成绩和英语成绩的和是197分;语文和数学成绩加起来是199分;数学和英语成绩加起来是196分。想一想,小刚的哪科成绩最高?你能算出小刚的各科成绩吗?

思路一:“放大”。通过观察发现,语、数、外三科成绩在题目中各出现两次,我们求197+199+196的和,这个和是“语数外成绩的2倍”,除以2得三科成绩之和,再减去任意两科的成绩,就得到第三科的成绩。

思路二:“缩小”。我们用语数成绩的和减去语外的成绩,199-197=2(分),这是数学减英语成绩的差。数学和英语的和是196分,再求数学的分数就不难了。放缩法有时运用在估算和验算上。

例11:检验下列计算结果是否正确?

(1)18.7×6.9=137.3 (2)17485÷6.6=3609

对于(1)用总体估计,放大至19×7=133,估计得数要小于133,所以本题结果错误。对于(2)用最高位估计,把17看作18,把6.6看作6,18÷6=3,显然答数的最高位不会是3,故本题结果也不正确。

例12:把鸡和兔放在一起,共有48个头,114只足,问鸡、兔各有几只。

这是一道鸡兔同笼的典型问题,我们也用放缩法,不妨把鸡和兔的足数缩小2倍,那么,鸡的足数和它的头数一样,而兔的足数是它的只数的2倍。所以,总的足数缩小2倍后,鸡和兔的总足数与它们的总只数相差数就是兔的只数。

8、验证法

你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。

验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。

(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。

(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。

(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)

按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。

(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。