初中数学计算公式
在解一元二次方程时的公式
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1_X2=c/a 注:韦达定理
判别式
有关立体几何面积方面的公式
直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c'_h
正棱锥侧面积 S=1/2c_h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_r2
圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l
有关立体几何体积的公式
体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积
柱体体积公式 V=s_h 圆柱体 V=pi_r2h
在几何证明题会用到的原理公式
过两点有且只有一条直线。
两点之间线段最短 。
同角或等角的补角相等 。
同角或等角的余角相等 。
过一点有且只有一条直线和已知直线垂直 。
直线外一点与直线上各点连接的所有线段中,垂线段最短。
平行公理 经过直线外一点,有且只有一条直线与这条直线平行 。
如果两条直线都和第三条直线平行,这两条直线也互相平行 。
同位角相等,两直线平行 。
内错角相等,两直线平行 。
同旁内角互补,两直线平行。
初中数学的计算公式
完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2
平方差公式:(a+b)(a-b)=a^2-b^2
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1_X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c'_h
正棱锥侧面积 S=1/2c_h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_r2
圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l
弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r
锥体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s_h 圆柱体 V=pi_r2h
初二年级数学公式
抛物线顶点坐标公式
y=ax2+bx+c(a≠0)的顶点坐标公式是(-b/2a,(4ac-b2)/4a)
y=ax2+bx的顶点坐标是(-b/2a,-b2/4a)
相关结论
过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有
① x1_x2 = p^2/4 , y1_y2 = —P^2,要在直线过焦点时才能成立;
② 焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)^2];
③ (1/|FA|)+(1/|FB|)= 2/P;
④若OA垂直OB则AB过定点M(2P,0);
⑤焦半径:|FP|=x+p/2 (抛物线上一点P到焦点F距离等于到准线L距离);
⑥弦长公式:AB=√(1+k^2)_│x2-x1│;
⑦△=b^2-4ac;
⑧由抛物线焦点到其切线的垂线距离,是焦点到切点的距离,与到顶点距离的比例中项;
⑨标准形式的抛物线在x0,y0点的切线就是:yy0=p(x+x0)。
⑴△=b^2-4ac>0有两个实数根;
⑵△=b^2-4ac=0有两个一样的实数根;
⑶△=b^2-4ac<0没实数根。
相关文章
西藏高考各个大学录取分数线排名表和最低位次2024-06-13 17:51:39
内蒙古高考各个大学录取分数线排名表和最低位次2024-06-13 17:50:37
青海高考各个大学录取分数线排名表和最低位次2024-06-13 17:49:36
新疆高考各个大学录取分数线排名表和最低位次2024-06-13 17:48:39
云南高考各个大学录取分数线排名表和最低位次2024-06-13 17:47:34
山西高考各个大学录取分数线排名表和最低位次2024-06-13 17:46:23
宁夏高考各个大学录取分数线排名表和最低位次2024-06-13 17:45:24
陕西高考各个大学录取分数线排名表和最低位次2024-06-13 17:44:26
中考改革信息最新2023-08-07 02:29:57
大学应届生个人求职简历模板五篇2023-08-01 16:24:00
关于数学学习方法2023-08-04 03:10:11
关于数学学习方法2023-08-04 03:10:11
小学数学常用公式总结归纳2023-08-09 18:24:52
初中常用物理公式总结归纳2023-08-14 21:53:21
小学数学上册二年级教案最新例文2023-08-08 22:23:05
新版北师大版二年级下册数学教案最新模板2023-08-03 02:14:11
最新一年级数学跷跷板教案模板2023-08-05 17:37:25