最新高一数学教案必修二文案1教学准备
教学目标
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理垂直的问题;
4.掌握向量垂直的条件.
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学过程
1.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,
则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).
并规定0向量与任何向量的数量积为0.
×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的积有什么区别?
(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.
(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分.符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替.
(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.
最新高一数学教案必修二文案2
学习目标1.能根据抛物线的定义建立抛物线的标准方程;
2.会根据抛物线的标准方程写出其焦点坐标与准线方程;
3.会求抛物线的标准方程。
一、预习检查
1.完成下表:
标准方程
图形
焦点坐标
准线方程
开口方向
2.求抛物线的焦点坐标和准线方程.
3.求经过点的抛物线的标准方程.
二、问题探究
探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程?
探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较.
例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程.
例2.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程,准线方程.
例3.抛物线的顶点在原点,对称轴为轴,它与圆相交,公共弦的长为.求该抛物线的方程,并写出其焦点坐标与准线方程.
三、思维训练
1.在平面直角坐标系中,若抛物线上的点到该抛物线的焦点的距离为6,则点的横坐标为.
2.抛物线的焦点到其准线的距离是.
3.设为抛物线的焦点,为该抛物线上三点,若,则=.
4.若抛物线上两点到焦点的距离和为5,则线段的中点到轴的距离是.
5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的方程。
四、课后巩固
1.抛物线的准线方程是.
2.抛物线上一点到焦点的距离为,则点到轴的距离为.
3.已知抛物线,焦点到准线的距离为,则.
4.经过点的抛物线的标准方程为.
5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是.
6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程.
7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标。
最新高一数学教案必修二文案3
学习目标1.掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质
2.掌握标准方程中的几何意义
3.能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题
一、预习检查
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为.
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为.
3、双曲线的渐进线方程为.
4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是.
二、问题探究
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同.
探究2、双曲线与其渐近线具有怎样的关系.
练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是.
例1根据以下条件,分别求出双曲线的标准方程.
(1)过点,离心率.
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为.
例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率.
例3(理)求离心率为,且过点的双曲线标准方程.
三、思维训练
1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是.
2、椭圆的离心率为,则双曲线的离心率为.
3、双曲线的渐进线方程是,则双曲线的离心率等于=.
4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则.
四、知识巩固
1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是.
2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为.
3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为.
4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率.
5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和.求双曲线的离心率的取值范围.
最新高一数学教案必修二文案4
重点难点教学:
1.正确理解映射的概念;
2.函数相等的两个条件;
3.求函数的定义域和值域。
一.教学过程:
1.使学生熟练掌握函数的概念和映射的定义;
2.使学生能够根据已知条件求出函数的定义域和值域;3.使学生掌握函数的三种表示方法。
二.教学内容:
1.函数的定义
设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数()fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:
(),yf_A
其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}f_A?叫值域(range)。显然,值域是集合B的子集。
注意:
①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2.构成函数的三要素定义域、对应关系和值域。
3、映射的定义
设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意
一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
4.区间及写法:
设a、b是两个实数,且a
(1)满足不等式axb??的实数x的集合叫做闭区间,表示为[a,b];
(2)满足不等式axb??的实数x的集合叫做开区间,表示为(a,b);
5.函数的三种表示方法①解析法②列表法③图像法
最新高一数学教案必修二文案5
教学目标:
(1)了解集合、元素的概念,体会集合中元素的三个特征;
(2)理解元素与集合的"属于"和"不属于"关系;
(3)掌握常用数集及其记法;
教学重点:掌握集合的基本概念;
教学难点:元素与集合的关系;
教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容
二、新课教学
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;
(2)我国的小河流;
(3)非负奇数;
(4)方程的解;
(5)某校2007级新生;
(6)血压很高的人;
(7)的数学家;
(8)平面直角坐标系内所有第三象限的点
(9)全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
5.元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belongto)A,记作:a∈A
(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作:aA
例如,我们A表示"1~20以内的所有质数"组成的集合,则有3∈A
4A,等等。
6.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C...表示,集合的元素用小写的拉丁字母a,b,c,...表示。
7.常用的数集及记法:
非负整数集(或自然数集),记作N;
正整数集,记作N_或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R;
(二)例题讲解:
例1.用"∈"或""符号填空:
(1)8N;(2)0N;
(3)-3Z;(4)Q;
(5)设A为所有亚洲国家组成的集合,则中国A,美国A,印度A,英国A。
例2.已知集合P的元素为,若3∈P且-1P,求实数m的值。
(三)课堂练习:
课本P5练习1;
归纳小结:
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法。
作业布置:
1.习题1.1,第1-2题;
2.预习集合的表示方法。
相关文章
西藏高考各个大学录取分数线排名表和最低位次2024-06-13 17:51:39
内蒙古高考各个大学录取分数线排名表和最低位次2024-06-13 17:50:37
青海高考各个大学录取分数线排名表和最低位次2024-06-13 17:49:36
新疆高考各个大学录取分数线排名表和最低位次2024-06-13 17:48:39
云南高考各个大学录取分数线排名表和最低位次2024-06-13 17:47:34
山西高考各个大学录取分数线排名表和最低位次2024-06-13 17:46:23
宁夏高考各个大学录取分数线排名表和最低位次2024-06-13 17:45:24
陕西高考各个大学录取分数线排名表和最低位次2024-06-13 17:44:26
军人入党申请书最新版10篇2023-08-13 18:17:34
简单个人简历电子版五篇2023-08-03 13:24:54
天津中考报名信息最新2023-08-11 12:51:47
高一数学教案大全最新范文2023-08-10 00:44:15
高一数学教案模板最新例文2023-08-11 17:25:40
高一数学教案教学设计最新例文2023-08-10 09:54:34
小学数学上册二年级教案最新例文2023-08-08 22:23:05
新版北师大版二年级下册数学教案最新模板2023-08-03 02:14:11
最新一年级数学跷跷板教案模板2023-08-05 17:37:25