高一数学教案函数的最值1
一、教材分析及处理
函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。
对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。
教学重点是函数的概念,难点是对函数概念的本质的理解。
学生现状
学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。
二、教学三维目标分析
1、知识与技能(重点和难点)
(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。
(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。
(3)、掌握定义域的表示法,如区间形式等。
(4)、了解映射的概念。
2、过程与方法
函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:
(1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。
(2)、面向全体学生,根据课本大纲要求授课。
(3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。
3、情感态度与价值观
(1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识,教案《《函数》教学设计》。
(2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。
三、教学器材
多媒体ppt课件
四、教学过程
教学内容教师活动学生活动设计意图
《函数》课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的.学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活
知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫
思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接
新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题
对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的掌握知识
函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法
注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点
习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系
映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的铺垫
小结(用时五分钟)简单讲述本节的知识点,重难点做笔记前后知识的连贯,总结,使学生更明白知识点
五、教学评价
为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用"突出主题,循序渐进,反复应用"的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。
在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。
虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。
高一数学教案函数的最值2
一、教学目标
1、理解一次函数和正比例函数的概念,以及它们之间的关系。
2、能根据所给条件写出简单的一次函数表达式。
二、能力目标 1、经历一般规律的探索过程、发展学生的抽象思维能力。
2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。
三、情感目标 1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。 2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。
四、教学重难点 1、一次函数、正比例函数的概念及关系。 2、会根据已知信息写出一次函数的表达式。
五、教学过程 1、新课导入 有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的'增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,
请看: 某弹簧的自然长度为 3厘米,在弹性限度内,所挂物体的质量x每增加 1千克、弹簧长度y增加 0.5厘米。
(1)计算所挂物体的质量分别为 1千克、 2千克、 3千克、 4千克、 5千克时弹簧的长度,
(2)你能写出x与y之间的关系式吗? 分析:当不挂物体时,弹簧长度为 3厘米,当挂 1千克物体时,增加 0.5厘米,总长度为 3.5厘米,当增加 1千克物体,即所挂物体为 2千克时,弹簧又增加 0.5厘米,总共增加 1厘米,由此可见,所挂物体每增加 1千克,弹簧就伸长 0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。
2、做一做 某辆汽车油箱中原有汽油 100升,汽车每行驶 50千克耗油 9升。你能写出x与y之间的关系吗?(y=1000.18x或y=100 x) 接着看下面这些函数,你能说出这些函数有什么共同的特点吗?上面的几个函数关系式,都是左边是因变量,右边是含自变量的代数式,并且自变量和因变量的指数都是一次。
3、一次函数,正比例函数的概念 若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
4、例题讲解 例1:下列函数中,y是x的一次函数的是( ) ①y=x6;②y= ;③y= ;④y=7x A、①②③ B、①③④ C、①②③④ D、②③④ 分析:这道题考查的是一次函数的概念,特别要强调一次函数自变量与因变量的指数都是1,因而②不是一次函数,答案为B
高一数学教案函数的最值3
一、目标 知识与技能:了解可导函数的单调性与其导数的关系 ; 能利用导数研究函数的单调性,会求函数的单调区间。
过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;
情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
二、重点难点
教学重点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间
教学难点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间
三、教学过程:
函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便.
四、学情分析
我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。需要教师指导并借助动画给予直观的认识。
五、教学方法
发现式、启发式
新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1.学生的学习准备:
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:
1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
提问
1.判断函数的单调性有哪些方法?
(引导学生回答“定义法”,“图象法”。)
2.比如,要判断 y=x2 的单调性,如
何进行?(引导学生回顾分别用定义法、图象法完成。)
3.还有没有其它方法?如果遇到函数:
y=x3-3x判断单调性呢?(让学生短时
间内尝试完成,结果发现:用“定义法”,
作差后判断差的符号麻烦;用“图象法”,图象很难画出来。)
4.有没有捷径?(学生疑惑,由此引出课题)这就要用到咱们今天要学的导数法。
以问题形式复习相关的旧知识,同时引出新问题:三次函数判断单调性,定义法、图象法很不方便,有没有捷径?通过创设问题情境,使学生产生强烈的问题意识,积极主动地参与到学习中来。
(二)情景导入、展示目标。
设计意图:步步导入,吸引学生的注意力,明确学习目标。
(探索函数的单调性和导数的关系) 问:函数的单调性和导数有何关系呢?
教师仍以y=x2为例,借助几何画板动态演示,让学生记录结果在课前发的表格第二行中:
函数及图象 单调性 切线斜率k的正负 导数的正负
问:有何发现?(学生回答)
问:这个结果是否具有一般性呢?
(三)合作探究、精讲点拨。
我们来考察两个一般性的例子:
(教师指导学生动手实验:把准备的牙签放在表中曲线y=f(x)的图象上,作为曲线的切线,移动切线并记录结果在上表第三、四行中。)
问:能否得出什么规律?
让学生归纳总结,教师简单板书:
在某个区间(a,b)内,
若f ' (x)>0,则f(x)在(a,b)上是增函数;
若f ' (x)<0,则在f(x)(a,b)上是减函数。
教师说明:
要正确理解“某个区间”的含义,它必需是定义域内的某个区间。
1.这一部分是后面利用导数求函数单调区间的理论依据,重要性不言而喻,而学生又只学习了导数的意义和一些基本运算,要想得到严格的证明是不现实的,因此,只要求学生能借助几何直观得出结论,这与新课标中的要求是相吻合的。
2.教师对具体例子进行动态演示,学生对一般情况进行实验验证。由观察、猜想到归纳、总结,让学生体验知识的发现、发生过程,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体。
3.得出结论后,教师强调正确理解“某个区间”的含义,它必需是定义域内的某个区间。这一点将在例1的变式3具体体现。
4.考虑到本节课堂容量较大,这里没有提到函数在个别点处导数为零不影响单调性的情况(如y=x3在x=0处),这一问题将在后续课程中给学生补充。
应用导数求函数的单调区间
例1.求函数y=x2-3x的单调区间。
(引导学生得出解题思路:求导 →
令f ' (x)>0,得函数单调递增区间,令f ' (x)<0,得函数单调递减区间 → 下结论)
变式1:求函数y=3x3-3x2的单调区间。
(竞赛活动:将全班同学分成两大组指定分别用单调性的定义,和用求导数的方法解答,每组各推荐一位同学的答案进行投影。)
求单调区间是导数的一个重要应用,也是本节重点,为此,设计了例1及三个变式:
设计例1可引导学生得出用导数法求单调区间的解题步骤
设计变式1及竞赛活动可以激发学生的`学习热情,让他们学会比较,并深刻体验导数法的优越性。
巩固提高
变式2:求函数y=3e x -3x单调区间。
(学生上黑板解答)
变式3:求函数 的单调区间。
设计变式2且让学生上黑板解答可以规范解题格式,同时使学生了解用导数法可以求更复杂的函数的单调区间。
设计变式3是可使学生体会考虑定义域的必要性
例1及三个变式,依次涉及二次,三次函数,含指数的函数、反比例函数,这样一题多变,逐步深化,从而让学生领会:如何应用及哪类单调性问题该应用“导数法”解决。
多媒体展示探究思考题。
在学生分组实验的过程中教师巡回观察指导。 (课堂实录) ,
(四)反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)
(五)发导学案、布置预习。
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
九、板书设计
例1.求函数y=3x2-3x的单调区间。
变式1:求函数y=3x3-3x2的单调区间。
变式2:求函数y=3e x -3x单调区间。
变式3:求函数 的单调区间。
十、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
高一数学教案函数的最值4
教学目标 :①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复
合函数的定义域、值 域及单调性。
③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高
解题能力。
教学重点与难点:对数函数的性质的应用。
教学过程 设计:
⒈复习提问:对数函数的概念及性质。
⒉开始正课
1 比较数的大小
例 1 比较下列各组数的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的解题过程。
生:对数函数的单调性取决于底的大小:当0<a<1时,函数y=logax单< p="">
调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递
增,所以loga5.1<loga5.9。< p="">
板书:
解:Ⅰ)当0<a<1时,函数y=logax在(0,+∞)上是减函数,< p="">
∵5.1<5.9 ∴loga5.1>loga5.9
Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,
∵5.1<5.9 ∴loga5.1<loga5.9< p="">
师:请同学们观察一下⑵中这三个对数有何特征?
生:这三个对数底、真数都不相等。
师:那么对于这三个对数如何比大小?
生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板书:略。
师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函
数 的单调性比大小,②借用“中间量”间接比大小,③利用对数
函数图象的位置关系来比大小。
2 函数的定义域, 值 域及单调性。
例 2 ⑴求函数y=的定义域。
⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)
师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要
使函数有意义。若函数中含有分母,分母不为零;有偶次根式,
被开方式大于或等于零;若函数中有对数的形式,则真数大于
零,如果函数中同时出现以上几种情况,就要全部考虑进去,求
它们共同作用的结果。)
生:分母2x-1≠0且偶次根式的被开方式log0.8x-1≥0,且真数x>0。
板书:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
师:接下来我们一起来解这个不等式。
分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,
再根据对数函数的单调性求解。
师:请你写一下这道题的解题过程。
生:<板书>
解: x2+2x-3>0 x<-3 或 x>1
(3x+3)>0 , x>-1
x2+2x-3<(3x+3) -2<x<3< p="">
不等式的解为:1<x<3< p="">
例 3 求下列函数的值域和单调区间。
⑴y=log0.5(x- x2)
⑵y=loga(x2+2x-3)(a>0,a≠1)
师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。
下面请同学们来解⑴。
生:此函数可看作是由y=log0.5u, u=x- x2复合而成。
板书:
解:⑴∵u=x- x2>0, ∴0<x<1< p="">
u=x- x2=-(x-0.5)2+0.25, ∴0<u≤0.25< p="">
∴y=log0.5u≥log0.50.25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u=x- x2
y=log0.5u
y=log0.5(x- x2)
函数y=log0.5(x- x2)的单调递减区间(0,0.5],单调递 增区间[0.5,1)
注:研究任何函数的性质时,都应该首先保证这个函数有意义,否则
函数都不存在,性质就无从谈起。
师:在⑴的基础上,我们一起来解⑵。请同学们观察一下⑴与⑵有什
么区别?
生:⑴的底数是常值,⑵的底数是字母。
师:那么⑵如何来解?
生:只要对a进行分类讨论,做法与⑴类似。
板书:略。
⒊小结
这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能
通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。
⒋作业
⑴解不等式
①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数)
⑵已知函数y=loga(x2-2x),(a>0,a≠1)
①求它的单调区间;②当0<a<1时,分别在各单调区间上求它的反函数。< p="">
⑶已知函数y=loga (a>0, b>0, 且 a≠1)
①求它的定义域;②讨论它的`奇偶性; ③讨论它的单调性。
⑷已知函数y=loga(ax-1) (a>0,a≠1),
①求它的定义域;②当x为何值时,函数值大于1;③讨论它的
单调性。
5.课堂教学设计说明
这节课是安排为习题课,主要利用对数函数的性质解决一些问题,整个一堂课分两个部分:一 .比较数的大小,想通过这一部分的练习,
培养同学们构造函数的思想和分类讨论、数形结合的思想。二.函数的定义域, 值 域及单调性,想通过这一部分的练习,能使同学们重视求函数的定义域。因为学生在求函数的值域和单调区间时,往往不考虑函数的定义域,并且这种错误很顽固,不易纠正。因此,力求学生做到想法正确,步骤清晰。为了调动学生的积极性,突出学生是课堂的主体,便把例题分了层次,由易到难,力求做到每题都能由学生独立完成。但是,每一道题的解题过程,老师都应该给以板书,这样既让学生有了获取新知识的快乐,又不必为了解题格式的不熟悉而烦恼。每一题讲完后,由教师简明扼要地小结,以使好学生掌握地更完善,较差的学生也能够跟上。
高一数学教案函数的最值5
教材分析:幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数。本课的教学重点是掌握常见幂函数的概念和性质,难点是根据幂函数的单调性比较两个同指数的指数式的大小。 幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数 。
组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质。对于幂函数,只需重点掌握 这五个函数的图象和性质。 学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。
学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了方法上的准备。因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。
教学目标:
㈠知识和技能
1.了解幂函数的概念,会画幂函数 , , 的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。
2.了解几个常见的幂函数的性质。
㈡过程与方法 1.通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。 2.使学生进一步体会数形结合的思想。
㈢情感、态度与价值观 1.通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。 2.利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望。 教学重点 常见幂函数的概念和性质 教学难点 幂函数的单调性与幂指数的关系
教学过程 一、创设情景,引入新课 问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系? (总结:根据函数的定义可知,这里p是w的函数)
问题2:如果正方形的边长为a,那么正方形的面积 ,这里S是a的函数。 问题3:如果正方体的`边长为a,那么正方体的体积 ,这里V是a的函数。 问题4:如果正方形场地面积为S,那么正方形的边长 ,这里a是S的函数 问题5:如果某人 s内骑车行进了 km,那么他骑车的速度 ,这里v是t的函数。 以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量) 这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)
二、新课讲解 (一)幂函数的概念 如果设变量为 ,函数值为 ,你能根据以上的生活实例得到怎样的一些具体的函数式? 这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗? 这就是幂函数的一般式,你能根据指数函数、对数函数的定义,给出幂函数的定义吗? 幂函数的定义:一般地,我们把形如 的函数称为幂函数(power function),其中 是自变量, 是常数。
【探究一】幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念) 结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别: 对幂函数来说,底数是自变量,指数是常数 对指数函数来说,指数是自变量,底数是常数 试一试:判断下列函数那些是幂函数 (1) (2) (3) (4) 我们已经对幂函数的概念有了比较深刻的认识,根据我们前面学习指数函数、对数函数的学习经历,你认为我们下面应该研究什么呢?(研究图象和性质) (二)几个常见幂函数的图象和性质 在初中我们已经学习了幂函数 的图象和性质,请同学们在同一坐标系中画出它们的图象。 根据你的学习经历,你能在同一坐标系内画出函数 的图象吗?
【探究二】观察函数 的图象,将你发现的结论写在下表内。 定义域 值域 奇偶性 单调性 定点 图象范围
【探究三】根据上表的内容并结合图象,试总结函数: 的共同性质。 (1) 函数 的图象都过点 (2) 函数 在 上单调递增; 归纳:幂函数 图象的基本特征是,当 是,图象过点 ,且在第一象限随 的增大而上升,函数在区间 上是单调增函数。(演示几何画板制作课件:幂函数.asp) 请同学们模仿我们探究幂函数 图象的基本特征 的情况探讨 时幂函数 图象的基本特征。(利用drawtools软件作图研究) 归纳: 时幂函数 图象的基本特征:过点 ,且在第一象限随 的增大而下降,函数在区间 上是单调减函数,且向右无限接近X轴,向上无限接近Y轴。
(三)例题剖析 【例1】求下列幂函数的定义域,并指出其奇偶性、单调性。 (1) (2) (3) 分析:根据你的学习经历,你觉得求一个函数的定义域应该从哪些方面来考虑? 方法引导:解决有关函数求定义域的问题时,可以从以下几个方面来考虑,列出相应不等式或不等式组,解不等式或不等式组即可得到所求函数的定义域。 (1) 若函数解析式中含有分母,分母不能为0; (2) 若函数解析式中含有根号,要注意偶次根号下非负; (3) 0的0次幂没有意义; (4) 若函数解析式中含有对数式,要注意对数的真数大于0; 求函数的定义域的本质是解不等式或不等式组。 结论:在函数解析式中含有分数指数时,可以把它们的解析式化成根式,根据“偶次根号下非负”这一条件来求出对应函数的定义域;当函数解析式的幂指数为负数时,根据负指数幂的意义将其转化为分式形式,根据分式的分母不能为0这一限制条件来求出对应函数的定义域。 归纳分析如果判断幂函数的单调性(第一象限利用性质,其余象限利用函数奇偶性与单调性的关系)
【例2】比较下列各组数中两个值的大小(在横线上填上“<”或“>”) (1) ________ (2) ________ (3) __________ (4) ____________ 分析:利用考察其相对应的幂函数和指数函数来比较大小 三、课堂小结 1、 幂函数的概念及其指数函数表达式的区别 2、 常见幂函数的图象和幂函数的性质。 四、布置作业 ㈠课本第73页习题2.4第1、2、3题 ㈡思考题:根据下列条件对于幂函数 的有关性质的叙述,分别指出幂函数 的图象具有下列特点之一时的 的值,其中 (1)图象过原点,且随 的增大而上升; (2)图象不过原点,不与坐标轴相交,且随 的增大而下降; (3)图象关于 轴对称,且与坐标轴相交; (4)图象关于 轴对称,但不与坐标轴相交; (5)图象关于原点对称,且过原点; (6)图象关于原点对称,但不过原点;
检测与反馈 姓名
1、下列函数中,是幂函数的是( ) A、 B、 C、 D、
2、下列结论正确的是( ) A、幂函数的图象一定过原点 B、当 时,幂函数 是减函数 C、当 时,幂函数 是增函数 D、函数 既是二次函数,也是幂函数
3、下列函数中,在 是增函数的是( ) A、 B、 C、 D、
4、函数 的图象大致是( )
5、已知某幂函数的图象经过点 ,则这个函数的解析式为_______________________ 6、写出下列函数的定义域,并指出它们的单调性: (1) (2) (3) 同伴评 (优、良、中、须努力) 自 评 (优、良、中、须努力) 教师评 (优、良、中、须努力)
相关文章
西藏高考各个大学录取分数线排名表和最低位次2024-06-13 17:51:39
内蒙古高考各个大学录取分数线排名表和最低位次2024-06-13 17:50:37
青海高考各个大学录取分数线排名表和最低位次2024-06-13 17:49:36
新疆高考各个大学录取分数线排名表和最低位次2024-06-13 17:48:39
云南高考各个大学录取分数线排名表和最低位次2024-06-13 17:47:34
山西高考各个大学录取分数线排名表和最低位次2024-06-13 17:46:23
宁夏高考各个大学录取分数线排名表和最低位次2024-06-13 17:45:24
陕西高考各个大学录取分数线排名表和最低位次2024-06-13 17:44:26
企业员工入党申请书最新最简单五篇2023-08-17 00:57:22
中考世界地理知识整理2023-08-08 03:26:16
个人简历电子版五篇2023-08-06 14:59:16
数学学科课堂教学计划范文2023-08-12 05:24:36
高三数学下学期教学计划模板2023-08-11 13:16:26
数学教学备课工作计划范文2023-08-12 15:07:50
小学数学上册二年级教案最新例文2023-08-08 22:23:05
新版北师大版二年级下册数学教案最新模板2023-08-03 02:14:11
最新一年级数学跷跷板教案模板2023-08-05 17:37:25