高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

高三数学教案文案

更新时间:2023-08-04 14:54:07 来源:高考在线

高三数学教案2021文案1

1)了解数的概念发展的过程和动力;

(2)了解引进虚数单位i的必要性和作用;理解i的性质.

(3)正确对复数进行分类,掌握数集之间的从属关系;

(4)了解数系从自然数到有理数到实数再到复数扩充的基本思想.

教学建议

1.教材分析

(1)知识结构

首先简明扼要地对已经学过的数集因生产与科学发展的需要而逐步扩充的过程作了概括;然后说明,数集的每一次扩充,对数学学科本身来说,也解决了原有数集中某种运算不是永远可以实施的矛盾,使得某些代数方程在新的数集中能够有解。从而引出虚数单位i及其性质,接着,将数的范围扩充到复数,并指出复数后来由于在科学技术中得到应用而进一步发展。

①从实际生产需要推进数的发展

自然数 整数 有理数 无理数

②从解方程的需要推进数的发展

负数 分数 无理数 虚数

(2)重点、难点分析

(一)认识数的概念的发展的动力

从正整数扩充到整数,从整数扩充到有理数,从有理数扩充到实数,数的概念是不断发展的,其发展的动力来自两个方面。

①解决实际问题的需要

由于计数的需要产生了自然数;为了表示具有相反意义的量的需要产生了整数;由于测量的需要产生了有理数;由于表示量与量的比值(如正方形对角线的长度与边长的比值)的需要产生了无理数(既无限不循环小数)。

②解方程的需要。

为了使方程 有解,就引进了负数;为了使方程 有解,就要引进分数;为了使方程 有解,就要引进无理数。

引进无理数后,我们已经能使方程 永远有解,但是,这并没有彻底解决问题,当 时,方程 在实数范围内无解。为了使方程 ( )有解,就必须把实数概念进一步扩大,这就必须引进新的数。

(二)注意数的概念在扩大时要遵循的原则

第一,要能解决实际问题中或数学内部的矛盾。现在要解决的就是在实数集中,方程 无解这一矛盾。

第二,要尽量地保留原有数集(现在是实数集)的性质,特别是它的运算性质。

(三)正确确认识数集之间的关系

①有理数就是一切形如 的数,其中 ,所以有理数集实际就是分数集.

②“循环节不为0的循环小数也都是有理数”.

③{有理数}={分数}={循环小数},{实数}={小数}.

④自然数集N、整数集Z、有理数集Q、实数集R、复数集C之间有如下的包含关系:

2.教法建议

(1)注意知识的连续性:数的发展过程是漫长的,每一次发展都来自于生产、生活和计算等需要,所以在教学时要注意使学生认识到数的发展的两个动力.

(2)创造良好的课堂气氛:由于本节课要了解扩充实数集的必要性,所以,教师可以多向学生介绍一些数的发展过程中的一些科学史,课堂学习的气氛可以营造成一种师生共同研究、共同交流的气氛。

数的概念的发展

教学目的

1.使学生了解数是在人类社会的生产和生活中产生和发展起来的,了解虚数产生历史过程;

2.理解并掌握虚数单位的定义及性质;

3.掌握复数的定义及复数的分类.

教学重点

虚数单位的定义、性质及复数的分类.

教学难点

虚数单位的性质.

教学过程

一、复习引入

原始社会,由于计数的需要产生了自然数的概念,随着文字的产生和发展,出现了记数的符号,进而建立了自然数的概念。自然数的全体构成自然数集.

为了表示具有相反意义的量引进了正负数以及表示没有的零,这样将数集扩充到有理数集

有些量与量之间的比值,如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为解决这种矛盾,人们又引进了无理数,有理数和无理数合并在一起,构成实数集.

数的概念是人类社会的生产和生活中产生和发展起来的,数学理论的研究和发展也推动着数的概念的发展,数已经成为现代社会生活和科学技术时刻离不开的科学语言和工具.

二、新课教学

(一)虚数的产生

我们知道,在实数范围内,解方程 是无能为力的,只有把实数集扩充到复数集才能解决.对于复数 (a、b都是实数)来说,当 时,就是实数;当 时叫虚数,当 时,叫做纯虚数.可是,历引进虚数,把实数集扩充到复数集可不是件容易的事,那么,历是如何引进虚数的呢?

16世纪意大利米兰学者卡当(1501—1576)在1545年发表的《重要的艺术》一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”.他是第一个把负数的平方根写到公式中的数学家,并且在讨论是否可能把10分成两部分,使它们的乘积等于40时,他把答案写成 ,尽管他认为 和 这两个表示式是没有意义的、想象的、虚无飘渺的,但他还是把10分成了两部分,并使它们的乘积等于40.给出“虚数”这一名称的是法国数学家笛卡尔(1596—1650),他在《几何学》(1637年发表)中使“虚的数’‘与“实的数”相对应,从此,虚数才流传开来.

数系中发现一颗新星——虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数.德国数学家菜不尼茨(1664—1716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”.瑞士数学大师欧拉(1707—1783)说:“一切形如 , 习的数学式子都是不可能有的,想象的数,因为它们所表示的是负数的平方根.对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻.”然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地.法国数学家达兰贝尔(.1717—1783)在 1747年指出,如果按照多项式的四则运算规则对虚数进行运算,那么它的结果总是 的形式(a、b都是实数)(说明:现行教科书中没有使用记号 而使用 ).法国数学家棣莫佛(1667—1754)在1730年发现公式了 ,这就是的探莫佛定理.欧拉在 1748年发现了有名的关系式 ,并且是他在《微分公式》(1777年)一文中第一次用i来表示-1的平方根,首创了用符号i作为虚数的单位.“虚数”实际上不是想象出来的,而它是确实存在的.挪威的测量学家未塞尔(1745—1818)在1779年试图给于这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视.

德国数学家高斯(1777—1855)在 1806年公布了虚数的图象表示法,即所有实数能用一条数轴表示,同样,虚数也能用一个平面上的点来表示.在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数 .象这样,由各点都对应复数的平面叫做“复平面”,后来又称“高斯平面”.高斯在1831年,用实数组(a,b)代表复数 ,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”.他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合.统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数—一对应,扩展为平面上的点与复数—一对应.高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间—一对应的关系,阐述了复数的几何加法与乘法.至此,复数理论才比较完整和系统地建立起来了.

经过许多数学家长期不懈的努力,深刻探讨并发展了复数理论,才使得在数学领域游荡了200年的幽灵——虚数揭去了神秘的面纱,显现出它的本来面目,原来虚数不虚呵.虚数成为了数系大家庭中一员,从而实数集才扩充到了复数集.

随着科学和技术的进步,复数理论已越来越显出它的重要性,它不但对于数学本身的发展有着极其重要的意义,而且为证明机翼上升力的基本定理起到了重要作用,并在解决堤坝渗水的问题中显示了它的威力,也为建立巨大水电站提供了重要的理论依据.

(二)、虚数单位

1.规定i叫虚数单位,并规定:

(1)

(2)实数与它进行四则运算时,原有的加、乘运算律仍然成立

2.形如 ( )的数叫复数,常用一个字母z表示,即 ( )

注:(1) ( )叫复数的代数形式;

(2)以后说复数 都有 ;

(3)a叫复数 ( )的实部记作 ;b叫复数 ( )的虚部,用 表示;

(4)全体复数的所成的集合叫复数集用C表示.

例1.指出下列复数的实部、虚部:

(1 (2) (4) (5)

(6) (7) (8)10

3. 复数 ( )当 时z是实数,当 时,z是虚数.

例2. ( )取什么值时,复数 是( )

(1) 实数 (2) 纯虚数 (3) 零

解:∵ ,∴ ,

(1)z为实数,则 解得: 或

(2) z为实数,则 解得:

(3)z为零,则 解得:

高三数学教案2021文案2

高中一年级的新同学们,当你们踏进高中校门,漫步在优美的校园时,看见老师严谨而热心的教学和师兄、师姐深切的关怀时,我想你们会暗暗决心:争取学好高中阶段的各门学科。在新的高考制度"3+综合"普遍吹散全国大地之时,代表人们基本素质的"3"科中,数学是最能体现一个人的思维能力,判断能力、反应敏捷能力和聪明程度的学科。数学直接影响着国民的基本素质和生活质量,良好的数学修养将为人的一生可持续发展奠定基础,高中阶段则应可能充分反映学习者对数学的不同需求,使每个学生都能学习适合他们自己的数学。

一、高中数学课的设置

高中数学内容丰富,知识面广泛,高一年级上学期学习第一册(上):第一章集合与简易逻辑;第二章函数;第三章数列。高一年级下学期学习第一册(下):第四章三角函数;第五章平面向量。高二年级上学期学习第二册(上):第六章不等式;第七章直线和圆的方程;第八章圆锥曲线方程。高二年级下学期学习第二册(下):第九章直线、平面、简单几何体;第十章排列、组合和概率。高二结束将有数学"会考"。高三年级文科生学习第三册(选修1):第一章统计;第二章极限与导数。高三年级理科生学习第三册(选修2):第一章概率与统计;第二章极限;第三章导数;第四章复数。高三还将进行全面复习,并有重要的"高考"。

二、初中数学与高中数学的差异。

1、知识差异。初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是"0-1800"范围内的,但实际当中也有7200和"-300"等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》(第九章直线、平面、简单几何体),将在三维空间中求角和距离等。

还将学习"排列组合"知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,(=6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答:=3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=--1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。

2、学习方法的差异。

(1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九们课学生同时学习),每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再进行新课。

(2)模仿与创新的区别。

初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。

3、学生自学能力的差异

初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。

其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最终达到了自强。

4、思维习惯上的差异

初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维。提高学生的思维递进性。

5、定量与变量的差异

初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程ax2+bx+c=0(a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。

三、如何学好高中数学

良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。高考题中与函数思想方法有关的习题占整个试题的60%以上。

1、有良好的学习兴趣

两千多年前孔子说过:"知之者不如好之者,好之者不如乐之者。"意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。"好"和"乐"就是愿意学,喜欢学,这就是兴趣。兴趣是的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的"认识"过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?

(1)课前预习,对所学知识产生疑问,产生好奇心。

(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

(3)思考问题注意归纳,挖掘你学习的潜力。

(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?

(5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、至交坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。

2、建立良好的学习数学习惯。

习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

3、有意识培养自己的各方面能力

数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。

平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计"智力课"和"智力问题"比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。

四、其它注意事项

1、注意化归转化思想学习。

人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。

2、学会数学教材的数学思想方法。

数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。实施这两步的措施可在课堂的听讲和课外的自学中进行。

课堂学习是数学学习的主战场。课堂中教师通过讲解、分解教材中的数学思想和进行数学技能地训练,使高中学生学习所得到丰富的数学知识,教师组织的科研活动,使教材中的数学概念、定理、原理得到程度的理解、挖掘。如初中学习的相反数概念教学中,教师的课堂教学往往有以下理解:①从定义角度求3、-5的相反数,相反数是的数是_____.②从数轴角度理解:什么样的两点表示数是互为相反数的。(关于原点对称的点)③从绝对值角度理解:绝对值_______的两个数是互为相反数的。④相加为零的两个数互为相反数吗?这些不同角度的教学会开阔学生思维,提高思维品质。望同学们把握好课堂这个学习的主战场。

五、学数学的几个建议。

1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。

2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

3、记忆数学规律和数学小结论。

4、与同学建立好关系,争做"小老师",形成数学学习"互助组"。

5、争做数学课外题,加大自学力度。

6、反复巩固,消灭前学后忘。

7、学会总结归类。可:①从数学思想分类②从解题方法归类③从知识应用上分类

同学们在高中有优美的学习环境,有一群乐于事业的热心教师,全体教师经验丰富,他们甘愿为你们做铺路石直至你们走进高等学校大门。我们数学组的全体教师一定会使你们成为数学学习的成功。

高三数学教案2021文案3

一、自我介绍

我姓x,是你们的数学老师,因为是数学老师所以在自我介绍的时候喜欢给出自己的数字特征,也是希望通过这些方式能拓宽与大家交流的平台,希望能与大家在课堂中相识,在生活中相知,不仅能成为你们知识的传授者,方法的指引者,更希望成为你们情感上的依赖者。

二、相信大家对于高中学习都充满着好奇,和初中相比,高中课程与初中课程有很大的不同。今天这节课我们不急于上新课,我想和大家聊一聊数学,一起来思考为什么要学习数学及如何学好数学这两个问题。

(一)为什么要学习数学

相信高一的第一节课是各位科任老师各显神通的时候,通过各种有趣的方式来突出每门课的重要性,作为数学老师我表达上不如文科老师迂回婉转和风趣幽默,我们更喜欢用数字说明问题。大家知道北大最的院系是什么系吗?早在蔡元培先生任北大校长时,就列数学系为北大第一系,这种传统一直保持到现在。为什么数学系在高校中有如此重要的地位?课本主编寄语是这样描述的:数学是有用的,数学有助于提高能力。

数学家华罗庚在《人民日报》精彩描述了数学在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁"等方面无处不有重要贡献。

问题1:大家知道海王星是怎么发现的,冥王星又是怎么被请出十大行星行列的?

海王星的发现是在数学计算过程中发现的,天文望远镜的观测只是验证了人们的推论。

1812年,法国人布瓦德在计算天王星的运动轨道时,发现理论计算值同观测资料发生了一系列误差。这使许多天文学家纷纷致力这个问题的研究,进而发现天王星的脱轨与一个未知的引力的存在相关。也就是说有一个未知的天体作用于天王星。1846年9月23日。柏林天文台收到来自法国巴黎的一封快信。发信人就是勒威耶。信中,勒威耶预告了一颗以往没有发现的新星:在摩羯座8星东约5度的地方,有一颗8等小星,每天退行69角秒。当夜,柏林天文台的加勒把巨大的天文望远镜对准摩羯座,果真在那里发现了一颗新的8等星。又过了-天,再次找到了这颗8等星,它的位置比前一天后退了70角秒。这与勒威耶预告的相差甚微。全世界都震动了。人们依照勒威耶的建议,按天文学惯例,用神话里的名字把这颗星命名为"海王星"。

1930年美国天文学家汤博发现冥王星,当时错估了冥王星的质量,以为冥王星比地球还大,所以命名为大行星。然而,经过近30年的进一步观测和计算,发现它的直径只有2300公里,比月球还要小,等到冥王星的大小被确认,"冥王星是大行星"早已被写入教科书,以后也就将错就错了。经过多年的争论,国际天文学联合会通过投票表决做出最终决定,取消冥王星的行星资格。8月24日据国际天文学联合会宣布,冥王星将被排除在行星行列之外,从而太阳系行星的数量将由九颗减为八颗。事实上,位居太阳系九大行星末席70多年的冥王星,自发现之日起地位就备受争议。

马克思说:"一种科学只有在成功运用数学时,才算达到了真正完善的地步。"正因为数学是日常生活和进一步学习必不可少的基础和工具,一切科学到了最后都归结为数学问题。

其实在我们的周围有很多事情都是可以用数学可以来解决的,无非很多人都没有用数学的眼光来看待。

问题2:jdj徒认为上帝是万能的。你们认为呢?如何来证明你的结论呢?(让同学发言)

我的观点:上帝不是万能的。为什么呢?仔细听我讲来。

证明:(反证法)假如上帝是万能的

那么他能够制作出一块无论什么力量都搬不动的石头

根据假设,既然上帝是万能的,那么他一定能够搬的动他自己制造的那石头

这与"无论什么力量都搬不动的石头"相矛盾

所以假设不成立

所以上帝不是万能的。问题3:抓阄对个人来说公平吗?5张票中有一张奖票,那么先抽还是后抽对个人还说公平吗?

当然,我们学习的数学只是数学学科体系中很基础,很小的一部分。现在课本上学的未必能直接应用于生活,主要是为以后学习更高层次的理科打好基础,同时,也为了掌握一些数学的思考方法以及分析问题解决问题的思维方式。哲学家培根说过:"读诗使人灵秀,读历史使人明智,学逻辑使人周密,学哲学使人善辩,学数学使人聪明…",也有人形象地称数学是思维的体操。下面我们通过具体的例子来体验一下某些数学思想方法和思维方式。

故事一:据说国际象棋是古印度的一位宰相发明的。国王很欣赏他的这项发明,问他的宰相要什么赏赐。聪明的宰相说,"我所要的从一粒谷子(没错,是1粒,不是1两或1斤)开始。在这个有64格的棋盘上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒数加倍,……如此下去,一直放满到棋盘上的64格。这就是我所要的赏赐。"国王觉得宰相要的实在不多,就叫人按宰相的要求赏赐。但后来发现即使把全国所有的谷子抬来也远远不够。

人们通常凭借自己掌握的数学知识耍些小聪明,使问题妙不可言。

数学游戏:两人相继轮流往长方形桌子上放同样大小的硬币,硬币一定要平放在桌面上,后放的硬币不能压在先放的硬币上,放最后一颗的硬币的人算赢。应该先放还是后放才有必胜的把握。

数学思想:退到最简单、最特殊的地方。

故事二:聪明的渡边:20世纪40年代末,手写工具突破性进展-圆珠笔问世,它以价廉、方便、书写流利在社会上广泛流传,但写到20万字时就会因圆珠磨小而漏油,影响了销售。工程师们从圆珠质量入手,从改进油墨性能入手进行改良,但收效甚微。于是厂家打出广告:解决此问题获奖金50万元。当时山地制笔厂的青年工人渡边看到女儿把圆珠笔用到快漏油时就德育不用这一现象中受到启发,很好地解决了这一问题,你认为他会怎么做呢?

渡边的成功之处就在于思维角度新,从问题的侧面轻巧取胜。也正体现了数学学习中经常用到的发散式思维。在数学学习中,既要有集中式思维又要有发散式思维。集中式思维是一种常用思维渠道,即为对问题的归纳,联系思维方式,表现为对解题方法的模仿和继承;而发散式思维即对问题开拓、创新,表现为对问题举一反三,触类旁通。在解决具体问题中,我们应该将两种思维方式相结合。

学数学有利于培养人的思维品质:结构意识、整体意识、抽象意识、化归意识、优化意识、反思意识,尽管数学在培养学生的这些思维品质方面和其他学科存在着交集,但数学在其中的地位是无法被代替的。总之,学习数学可以使人思考问题更合乎逻辑,更有条理,更严密精确,更深入简洁,更善于创造……

(二)如何学好数学

高中数学的内容多,抽象性、理论性强,高中很注重自学能力的培养的,高中不会像初中那样老师一天到晚盯着你,在高中一定要注重自学能力的培养,谁的自学能力强,那么在一定的程度上影响着你的成绩以及你将来你发展的前途。同时要注意以下几点:

第一:对数学学科特点有清楚的认识

主编寄语里是这样描述数学的特征的:数学是自然的。数学的概念、方法、思想都是人类长期实践中自然发展形成的,以数域的发展为例,从自然数到有理数到实数再到复数,都是由自然的认知冲突引起的。因此,在学习过程中我们有必要了解知识产生的背景,它的形成过程以及它的应用,让数学显得合情合理,浑然天成。数学中没有含糊不清的词,对错分明,凡事都要讲个为什么,只要按照数学规则去学去想就能融会贯通,但是如果不把来龙去脉想清楚而是"想当然"的话,那就学不下去了。

第二:要改变一个观念。

有人会说自己的基础不好。那我问下什么是基础?今天所学的知识就是明天的基础。明天学习的知识就是后天的基础。所以要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。过去的几年里我分别带过五十一中和一中的学生,两边学生的课堂感觉差不多,应该说接受能力不相上下,有的时候我会选择在五十一中开公开课,因为课堂气氛活跃、轻松,但是成绩差异却是很大,原因在于我们同学外课自主时间的投入太少,学习习惯不太好。

第三:学数学要摸索自己的学习方法

学习、掌握并能灵活应用数学的途径有千万条,每个人都可以有与众不同的数学学习方法。做习题、用数学解决各种问题是必需的,理解、学会证明、领会思想、掌握方法也是必需的。此外,还要发挥问题的作用,学会提问,热心帮助别人解决问题,用自己的问题和别人的问题带动自己的学习。同时,注意前后知识的衔接,类比地学、联系地学,既要从概念中看到它的具体背景,又要在具体的例子中想到它蕴含的一般概念。

第四:养成良好的学习习惯(与一中学生相比较)

㈠课前预习。怎样预习呢?就是自己在上课之前把内容先看一边,把自己不懂的地方做个记号或者打个问号,以至于上课的时候重点听,这样才能够很快提高自己的水平。但是预习不是很随便的把课本看一边,预习有个目标,那就是通过预习可以把书本后面的练习题可以自己独立的完成。一中的同学预习就已经有好几个层次了,先是课本,再是精编,再是高考题典,上课对于他们来说是第一轮高考复习。

㈡上课认真听讲。上课的时候准备课本,一只笔,一本草稿。做不做笔记你们自己决定,不过我不大提倡数学课做笔记的。不过有一点,有些知识点比较重要,课本上又没有的,我要求你们把它写在课本上的相应的空白地方。还有如果你觉得某个例题比较新或者比较重要,也可以把它记在书本的相应位置上,这样以后复习起来就一目了然了。那么草稿要来干什么的呢?课堂上你可以自己演算还有做课堂练习。

㈢关于作业。绝对不允许有抄作业的情况发生。如果我发现有谁抄作业,那么既然他这样喜欢抄,我就要你把当天的作业多抄几遍给我。那有人会问,碰到不会做的题目怎么办?有两个办法:一、向同学请教,请教做题目的思路,而不是整个过程和答案。同学之间也要相互帮助,如果你让他抄袭你的作业这样不是帮助他而是害他,这个道理大家应该明白吧。我非常提倡同学之间的相互讨论问题的,这样才能够相互促进提高。二、向老师请教,要养成多想多问的习惯。我的办公室在二楼二号,欢迎大家前来交流

㈣准备一本笔记本,作为自己的问题集。把平时自己不懂的和不大理解的还有易错的记录下来,并且要及时的消化,不懂的地方问老师。这是一个很好的办法,到考试的时候就可以有重点、有针对性的自己复习了。我高中的时候就是采用这样的方法把数学成绩提高。

好的开始是成功的一半,新的学期开始了,请大家调整好自己的思想,找到学习的原动力。播种一种思想,收获一种行为;播种一种行为,收获一种习惯;播种一种习惯,收获一种性格;播种一种性格,收获一种命运。愿每位同学都有个好的开始。

高三数学教案2021文案4

教学目标

1。使学生掌握的概念,图象和性质。

(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。

(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。

(3) 能利用的性质比较某些幂形数的大小,会利用的图象画出形如 的图象。

2。 通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。

3。通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。

教学建议

教材分析

(1) 是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。

(2) 本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数 在 和 时,函数值变化情况的区分。

(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。

教法建议

(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 , 等都不是。

(2)对底数 的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。

关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。

教学设计示例

课题

教学目标

1。 理解的定义,初步掌握的图象,性质及其简单应用。

2。 通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。

3。 通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

教学重点和难点

重点是理解的定义,把握图象和性质。

难点是认识底数对函数值影响的认识。

教学用具

投影仪

教学方法

启发讨论研究式

教学过程

一。 引入新课

我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————。

1。6。(板书)

这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

问题1:某种细胞-时,由1个-成2个,2个-成4个,……一个这样的细胞- 次后,得到的细胞-的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?

由学生回答: 与 之间的关系式,可以表示为 。

问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系。

由学生回答: 。

在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为。

一。 的概念(板书)

1。定义:形如 的函数称为。(板书)

教师在给出定义之后再对定义作几点说明。

2。几点说明 (板书)

(1) 关于对 的规定:

教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在。

若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定 且 。

(2)关于的定义域 (板书)

教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 。扩充的另一个原因是因为使她它更具代表更有应用价值。

(3)关于是否是的判断(板书)

刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。

(1) , (2) , (3)

(4) , (5) 。

学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象。

最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

3。归纳性质

作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。

函数

1。定义域 :

2。值域:

3。奇偶性 :既不是奇函数也不是偶函数

4。截距:在 轴上没有,在 轴上为1。

对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于 轴上方,且与 轴不相交。)

在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少。

此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近 轴, 越大,图象上升的越快),并连出光滑曲线。

二。图象与性质(板书)

1。图象的画法:性质指导下的列表描点法。

2。草图:

当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例。

此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是的方法,而图象变换的方法更为简单。即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象。

最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)

由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:

以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。

填好后,让学生仿照此例再列一个 的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。

3。性质。

(1)无论 为何值, 都有定义域为 ,值域为 ,都过点 。

(2) 时, 在定义域内为增函数, 时, 为减函数。

(3) 时, , 时, 。

总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。

三。简单应用 (板书)

1。利用单调性比大小。 (板书)

一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。

例1。 比较下列各组数的大小

(1) 与 ; (2) 与 ;

(3) 与1 。(板书)

首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。

解: 在 上是增函数,且

< 。(板书)

教师最后再强调过程必须写清三句话:

(1) 构造函数并指明函数的单调区间及相应的单调性。

(2) 自变量的大小比较。

(3) 函数值的大小比较。

后两个题的过程略。要求学生仿照第(1)题叙述过程。

例2。比较下列各组数的大小

(1) 与 ; (2) 与 ;

(3) 与 。(板书)

先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)

最后由学生说出 >1,<1,>。

解决后由教师小结比较大小的方法

(1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)

(2) 搭桥比较法: 用特殊的数1或0。

三。巩固练习

练习:比较下列各组数的大小(板书)

(1) 与 (2) 与 ;

(3) 与 ; (4) 与 。解答过程略

四。小结

1。的概念

2。的图象和性质

3。简单应用

五 。板书设计

高三数学教案2021文案5

教学目标

1.掌握等差数列前 项和的公式,并能运用公式解决简单的问题.

(1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式;

(2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已知其中三个量求另两个值;

(3)会利用等差数列通项公式与前 项和的公式研究 的最值.

2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法.

3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.

4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题.

教学建议

(1)知识结构

本节内容是等差数列前 项和公式的推导和应用,首先通过具体的例子给出了求等差数列前 项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题.

(2)重点、难点分析

教学重点是等差数列前 项和公式的推导和应用,难点是公式推导的思路.

推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要.等差数列前 项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前 项和公式与通项公式的综合运用体现了方程(组)思想.

高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上.

(3)教法建议

①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前 项和公式综合运用.

②前 项和公式的推导,建议由具体问题引入,使学生体会问题源于生活.

③强调从特殊到一般,再从一般到特殊的思考方法与研究方法.

④补充等差数列前 项和的值、最小值问题.

⑤用梯形面积公式记忆等差数列前 项和公式.

等差数列的前项和公式教学设计示例

教学目标

1.通过教学使学生理解等差数列的前 项和公式的推导过程,并能用公式解决简单的问题.

2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想.

教学重点,难点

教学重点是等差数列的前 项和公式的推导和应用,难点是获得推导公式的思路.

教学用具

实物投影仪,多媒体软件,电脑.

教学方法

讲授法.

教学过程

一.新课引入

提出问题(播放媒体资料):一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔?(课件设计见课件展示)

问题就是(板书)“ ”

这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.

我们希望求一般的等差数列的和,高斯算法对我们有何启发?

二.讲解新课

(板书)等差数列前 项和公式

1.公式推导(板书)

问题(幻灯片):设等差数列 的首项为 ,公差为 , 由学生讨论,研究高斯算法对一般等差数列求和的指导意义.

思路一:运用基本量思想,将各项用 和 表示,得

,有以下等式

,问题是一共有多少个 ,似乎与 的奇偶有关.这个思路似乎进行不下去了.

思路二:

上面的等式其实就是 ,为回避个数问题,做一个改写 , ,两式左右分别相加,得

于是有: .这就是倒序相加法.

思路三:受思路二的启发,重新调整思路一,可得 ,于是 .

于是得到了两个公式(投影片): 和 .

2.公式记忆

用梯形面积公式记忆等差数列前 项和公式,这里对图形进行了割、补两种处理,对应着等差数列前 项和的两个公式.

3.公式的应用

公式中含有四个量,运用方程的思想,知三求一.

例1.求和:(1) ;

(2) (结果用 表示)

解题的关键是数清项数,小结数项数的方法.

例2.等差数列 中前多少项的和是9900?

本题实质是反用公式,解一个关于 的一元二次函数,注意得到的项数 必须是正整数.

三.小结

1.推导等差数列前 项和公式的思路;

2.公式的应用中的数学思想.

四.板书设计