高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

初中数学同步练习答案整理

更新时间:2023-08-14 07:22:02 来源:高考在线

初一数学同步练习答案(苏教版)

第6章 一元一次方程

§6.1 从实际问题到方程

一、1.D 2. A 3. A

二、1. x = - 6 2. 2x-15=25 3. x =3(12-x)

三、1.解:设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米,可列方程为:

5.8-x=3x+0.6

2.解:设苹果买了x千克, 则可列方程为: 4x+3(5-x)=17

3.解:设原来课外数学小组的人数为x,则可列方程为:

§6.2 解一元一次方程(一)

一、1. D 2. C 3.A

二、1.x=-3,x= 2.10 3. x=5

三、1. x=7 2. x=4 3. x= 4. x= 5. x=3 6. y=

§6.2 解一元一次方程(二)

一、1. B 2. D 3. A

二、1.x=-5,y=3 2. 3. -3

三、1. (1)x= (2)x=-2 (3)x= (4) x=-4 (5)x = (6)x=-2

2. (1)设初一(2)班乒乓球小组共有x人, 得:9x-5=8x+2. 解得:x=7 (2)48人

3. (1)x=-7 (2)x=-3

§6.2 解一元一次方程(三)

一、1. C 2. D 3. B 4. B

二、1. 1 2. 3. 10

三、1. (1) x=3 (2) x=7 (3)x=–1 (4)x= (5) x=4 (6) x=

2. 3( x-2) -4(x- )=4 解得 x=-3 3. 3元

§6.2 解一元一次方程(四)

一、1. B 2.B 3. D

二、1. 5 2. , 3. 4. 15

三、1. (1)y = (2)y =6 (3) (4)x=

2. 由方程3(5x-6)=3-20x 解得x= ,把x= 代入方程a- x=2a+10x,得a =-8.

∴ 当a=-8时,方程3(5x-6)=3-20x与方程a- x=2a+10x有相同的解.

3. 解得:x=9

人教版初二年级数学同步练习题答案

1.答案:B

2.解析:∠α=30°+45°=75°.

答案:D

3.解析:延长线段CD到M,根据对顶角相等可知∠CDF=∠EDM.又因为AB∥CD,所以根据两直线平行,同位角相等,可知∠EDM=∠EAB=45°,所以∠CDF=45°.

答案:B

4. 解析:∵CD∥AB,∴∠EAB=∠2=80°.

∵∠ 1=∠E+∠EAB=120°,

∴∠E=40°,故选A.

答案:A

5.答案:B

6.答案:D

7. 答案:D

8. 答案:D

9.解析:根据四个选项的描述,画图如下,从而直接由图确定答案.

答案:①②④

10.答案:如果两个角是同一个角或相等角的余角,那么这两个角相等

11.答案:40°

12.答案:112.5°

13.解:(1)如果一个四边形是正方形,那么它的四个角都是直角,是真命题;

(2)如果两个三角形有两组角对应相等,那么这两个三角形相似,是真命题;

(3)如果两条直线不相交,那么这两条直线互相平行,是假命题,如图中长方体的棱a,b所在的直线既不相交,也不平行.

14. 解:平行.理由如下:∵∠ABC=∠ACB,

BD平分∠ABC,CE平分∠ACB,

∴∠DBC=∠ECB.∵∠DBF=∠F,

∴∠ECB=∠F.∴EC与DF平行.

15.证明:∵CE平分∠ACD(已知),

∴∠1=∠2(角平分线的定义).

∵∠BAC>∠1(三角形的一个外角大于任何一个和它不相邻的内角),

∴∠BAC >∠2(等量代换).∵∠2>∠B(三角形的一个外角大于任何一个和它不相邻的内角),∴ ∠BAC>∠B(不等式的性质).

16.证明:如 图④,设AD与BE交于O点,CE与AD交于P点,则有∠EOP=∠B+∠D,∠OPE=∠A+∠C(三角形的外角等于和它不相邻的两个内角的和).∵∠EOP+∠OPE+∠E=180°(三角形的内角和为180°),

∴∠A+∠B+∠C+∠D+∠E=180°.

如果点B移动到AC上(如图⑤)或AC的另一侧(如图⑥)时,∠EOP,∠OPE仍然分别是△BOD,△APC的外角,所以可与图④类似地证明,结论仍然成立.

17.解:(1)∠3=∠1+∠2;

证明 :证法一:过点P作CP∥l1(点C在点P的左边),如图①,则有∠1=∠MPC .

图①

∵CP∥l1,l1∥l2,∴CP∥l2,

∴∠2=∠NPC.

∴∠3=∠MPC+∠NPC=∠1+∠2,即∠3=∠1+∠2.

证法二:延长NP交l1于点D,如图②.

图②

∵l1∥l2,

∴∠2=∠MDP.

又∵∠3=∠1+∠MDP,

∴∠3=∠1+∠2.

(2)当点P在直线l1上方时, 有∠3=∠2-∠1;当点P在直线l2下方时,有∠3=∠1-∠2.

九年级上册数学同步练习册答案青岛版

【1.1相似多边形答案】

1、21

2、1.2,14.4

3、C

4、A

5、CD=3,AB=6,B′C′=3,

∠B=70°,∠D′=118°

6、(1)AB=32,CD=33;

(2)88°.

7、不相似,设新矩形的长、宽分别为a+2x,b+2x,

(1)a+2xa-b+2xb=2(b-a)xab,

∵a>b,x>0,

∴a+2xa≠b+2xb;

(2)a+2xb-b+2xa=(a-b)(a+b+2x)ab≠0,

∴a+2xb≠b+2xa,

由(1)(2)可知,这两个矩形的边长对应不成比例,所以这两个矩形不相似.

【1.2怎样判定三角形相似第1课时答案】

1、DE∶EC,基本事实9

2、AE=5,基本事实9的推论

3、A

4、A

5、5/2,5/3

6、1:2

7、AO/AD=2(n+1)+1,

理由是:

∵AE/AC=1n+1,设AE=x,则AC=(n+1)x,EC=nx,过D作DF∥BE交AC于点F,

∵D为BC的中点,

∴EF=FC,

∴EF=nx/2.

∵△AOE∽△ADF,

∴AO/AD=AE/AF=2n+2=2(n+1)+1.

【1.2怎样判定三角形相似第2课时答案】

1、∠ADC=∠ACB或∠ACD=∠B

2、∠C=∠E或∠B=∠D

3-5BCC

6、△ABC∽△AFG.

7、△ADE∽△ABC,△ADE∽△CBD,△CBD∽△ABC.