高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

《数与形》评课稿

更新时间:2023-08-05 17:39:47 来源:高考在线

  《数与形》评课稿 篇1

  著名数学家华罗庚说过“数缺形时少直观,形少数时难入微。”数形结合,可将抽象的数学语言与直观的图形相结合,是抽象思维与形象思维相结合。借助于图形的性质,可以使抽象的概念和关系直观化、形象化、简单化。本节课李老师把数形结合的道理与运用讲的深入显出,通俗易懂,课的亮点也颇多。

  一、课堂充满趣味性

  动是儿童的天性,将学生置于"学玩"结合的活动中,化枯燥的知识趣味化。李老师执教的《数与形》一课,学习和与奇数的个数有什么联系时,他先让学生独立思考,然后让学生说,再让学生用正方形去拼一拼等等,学生在动手操作中,明白方法,能够感知和与奇数的个数的关系。

  二、学习内容生活化,使学生感受数学与生活的联系

  数学源于生活,生活中处处有数学。在我们日常生活中充满着许多数学知识,在教学时融入生活中的数学,使他们感到生活与数学密切相关的道理,感到数学就在身边,对数学产生亲切感,激发他们学习数学、发现数学的热望。借助于学生的生活经验,把数学课题用学生熟悉的、感兴趣的、贴近于他们实际生活的素材来取代,李彬然老师利用花坛入手,引导学生去观察与本节课课题相符的内容,这样使学生对学习不陌生,又不枯燥,体现了教学内容的生活化,增加了教学的实效性。

  三、重视探究,引导学生经历知识的生成过程。

  弗赖登塔尔曾经说:“学一个活动最好的方法是做。”教师不仅要把知识的结构告诉学生,而且应引导学生主动地通过观察、实验、猜测、验证、推理与合作交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。

  李老师通过“N个连续自然数的和是( )”这个看似复杂的问题入手,引导学生运用小正方形探究1,1+3,1+3+5,1+3+5+7,怎么摆可以既体现不同的数又体现所有数字的和,根据结果提出自己的猜想,然后通过举例1+3+5+7+9=25=52,1+3+5+7+9+11=36=62,,1+3+5+7+9+11+13=49=72.........验证自己的猜想,最终得出结论N个连续自然数的和是N2。让学生循序渐进,层层深入地展开探究,而不是由教师灌输知识,使学生在自主探究的过程中体验和感受到发现的乐趣和成功的喜悦。

  《数与形》评课稿 篇2

  听了郑老师的教学片断。我们能深刻地体会到数形结合是相互印证的。形的问题中包含着数的规律,数的问题也可以用形来帮助解决,教学时,让学生通过解决问题体会到数与形的完美结合,通过数与形的`对应关系,相互印证结果,发现“和”都是“平方数”,再通过图形的规律理解“平方数”(即正方形数)的含义,并让学生大胆说出自己发现的其他规律。例如从第一个图到第三个图,怎样列式,每次增加多少个小正方形,加数都是连续奇数,这些奇数是怎么排列的,从而对规律形式更直观的认识。

  前面我们试教了两次加上今天,一共上了三次,下面我就对三次课堂上出现的问题提出来和大家一起来讨论一下。

  在第一次试教中发现。郑老师问:“9的平方为什么要从1加到17?”学生心里有想法,但不会表达,也就是学生对规律中,“奇数的个数”理解不到位。我们组员认为:摆出来的图形没有层次感,所以对正方形的颜色做了调整,由原来的同桌各剪10个边长是4厘米的正方形改成了一生剪1个黄色和7个绿色,另一生剪3个红色和5个蓝色的正方形。

  在第二次试教中发现。学生对数与形结合的思想体会不深刻。在计算1+3+5+7+5+3+1=时,学生不会说算理。我们组员认为:在郑老师教学“1+3+5+7=时,还没有总结出完整的规律,受一学生得影响,过早的出现最外层的算法,过分的强调最外层的算法,而忽略了图形的作用。所有对计算题做了调整删去1+3+5+7+5+3+1=,只计算1+3+5+7+9+11+13+11+9+7+5+3+1=?师:你有简便算法吗?

  经过了前面两节课的试教和调整,今天这节课上得和成功。学生不但能从不同的角度探索数与形的通用模式,而且还能归纳、总结出通用模式,并加以熟练地应用,从而体会和掌握归纳推理的思考和方法。