高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

数学学习计划(精选六篇)

更新时间:2023-08-15 14:35:40 来源:高考在线

  数学学习计划1

  一、复习目标:

  (1)使所学知识系统化、结构化、让学生将三年的数学知识连成一个有机整体,更利于学生理解;

  (2)精讲多练,巩固基础知识,掌握基本技能;

  (3)抓好方法教学,引导学生归纳、总结解题的方法,适应各种题型的变化;

  (4)做好综合题训练,提高学生综合运用知识分析问题的能力。

  二、复习方法与措施:

  1、挖掘教材,夯实基础,重视对基础知识的理解和基本方法的指导

  通过将近3年的学习,学生已经掌握了一定的基础知识、基本方法和基本技能,但对教材的理解是零碎的、解题规律的探究是肤浅的。因此,在组织学生进行总复习时,首先引导学生系统梳理教材、构建知识结构,让各种概念、公理、定理、公式、常用结论及解题方法技巧,都能在学生的头脑中再现。例如:分式的化简求值,学生应想到分解因式的方法、提公因式法、公式法等,证明三角形全等马上想到全等三角形的所有判定。教学中,要立足课本,充分挖掘和发挥教材例、习题的潜在功能,引导学生归纳、整理教材中的基础知识、基本方法,使之形成结构。例如:课本上的课题学习等。坚决克服那种重难题、重技巧、轻课本、轻基础的做法。

  2、抓好教材中例题、习题的归类、变式的教学。

  在数学复习课教学中,挖掘教材中的例题、习题等的功能,是大面积提高教学质量的需要。因此在复习中根据教学的目的、教学重点和学生实际,引导学生对相关例题进行分析、归类,总结解题规律,提高复习效率。对具有可变性的例习题,引导学生进行变式训练,使学生从多方面感知数学的方法、提高学生综合分析问题、解决问题的能力。

  3、强化训练,注重应用,发展能力

  数学教学的最终目的,是培养学生的创新意识、应用意识,及综合能力。教师可以自觉地、有目的地加以培养。这样,就可以大大地加快数学能力的形成和发展,使各种思维方法合理、简捷,最大限度地发挥学生创造性能力。分析近几年来各省市的中考能力题:在学生已有的基础上,可以通过阅读理解,推理分析,总结规律,归纳其结论;联系实际,注重应用,培养探索、发现、创新能力是中考命题必然趋势。因此在组织学生进行复习时,利用创意新颖、贴近学生生活的应用性、实践性、创造性、开放性问题来激活学生的思维。

  4、进行各种数学思想与数学方法的训练,提高学生的数学素质。

  理解掌握各种数学思想和方法是形成数学技能技巧,提高数学的能力的前提。初中数学中已经出现和运用了不少数学思想和方法。如转化的思想,函数的思想,方程思想,数形结合的思想等。数学方法有:换元法、配方法、图象法、解析法、待定系数法、分析法、综合法。这些方法要按要求灵活运用。因此复习中针对要求,分层训练。

  (1)采取不同训练形式。一方面应经常改变题型:填空题、判断题、选择题、简答题、证明题等交换使用,使学生认识到,虽然题变了,但解答题目的本质方法未变,增强学生训练的兴趣,另一方面改变题目的结构,如变更问题,改变条件等。

  (2)适当进行专题训练。用一定时间对一些方法进行专题训练,能使这一方法得到强化,学生印象深,掌握快、记忆牢。

  5、面向全体学生,实行分层教学

  由于学生学习数学能力差异较大,我们应该具体研究现阶段各层次学生最欠缺什么知识与能力,最需要提高哪方面的数学技能,寻找出他们存在的差异和问题,进而有选择、有重点地实行突破性分层教学,对不同层次的学生提出不同的要求,优等生可鼓励他们超前学习,中等生进行引导,后进生进行帮扶,特别要关心数学学习困难的学生,通过学习兴趣的培养和学习方法的指导,使他们达到最基本学习要求。例如:学困生平时我们应多鼓励少些打击,发现优点及时表扬和肯定,增强他们的学习自信心和学习兴趣,中等生应给予他们更多的引导和关心,让他们觉得只要在努力以下自己会更优秀,那么对待优等生就应该严格要求他们,让他们要做好其他同学的榜样。

  6、对能力有差异的学生进行分层要求

  每次考试结束,我们老师都会对试卷进行分析,但我们也应更多的让学生反思自己,学困生的基础题做对了几道,能力题突破了多少,成绩是否达到了自己的预期目标,卷面整齐程度如何;中等生对难题做到了哪一问,和上次比较有哪些进步和不足;优等生为什么没拿满分,为什会出现小失误,简单的计算题为什么会做错。不同层次的学生通过反思自己存在的问题,每次减少不必要的失误,使得成绩能稳步提高。

  7、合理使用好纠错本

  纠错本是毕业班学生必备的一个东西,学生把每次考试的错题进行归纳、整理,最好把自己的错误答案也能摘录下来,用不同颜色的笔来区分错误答案和正确答案,每次考试前,复习时只需要翻阅,看自己曾经那类问题掌握的不好,下次一定要注意,使得每次的失误减到最少。

  三、数学总复习的课堂结构

  数学复习课怎么上?怎么上效果最好?是所有数学老师头疼的问题,我觉得主要从以下几个方面入手:

  1、复习整理

  本环节主要是解决基础知识的梳理问题,教师要采用不同的形式,引导学生整理本单元的每课时基础知识,使内容条理画,清晰地呈现在学生面前,最好是让学生提前去预习。对重点、难点、疑点和关键,要有针对性地进行讲解,提高对基本知识、基本方法和知识点理解准确性。教师通过引导学生揭示所复习内容的知识结构,既可加深学生对知识的理解,又有利于学生对知识的记忆。

  2、精选例题,揭示规律

  通过典型例题的讲解,进一步巩固复习内容,熟练掌握数学思想方法,提高学生分析问题、解决问题的能力。

  (1)精选例题要有利于抓准基础知识

  数学的基本概念、法则、定理、性质和公式等,分散在各个章节中,复习的选例就要围绕和含盖这些知识来选例,使每道例题都尽可能包含若干知识点,并注意在覆盖所有知识点的基础突出重点与难点。精选例题要包含最基本的数学思想方法,不必追求偏、怪、难;不要贪多,要重视一题多解、一题多变在培养学生解题能力中的作用。

  (2)例题的讲解不是要让学生会做这道题,而是要引导学生切实掌握解题的核心和本质,培养学生分析和解决问题的能力,解题规律要总结,例题解答之后,要引导学生反思、总结解题的经验教训,对一些常用的数学思想方法、解题策略要予以归纳概括、揭示规律,提示学生今后注意运用。

  3、强化训练

  在完成模拟训练后要留下自我纠错和消化的时间,做好自我整理,并有跟踪练习,确保下次遇到类似题型绝不再错。学数学的目的是为了用数学,近年来各地中考涌现出了大量的形式活跃、趣味有益、启迪智慧的好题目,对这些热点题型认真复习,专项突破。

  4、课堂总结

  这是对整节课的系统和概括,是全部教学活动的落脚点和归宿,课堂总结应从以下几个方面考虑:

  (1)完整地归纳概括复习内容,阐明复习内容与其前后知识间关系。

  (2)概括总结数学思想方法,说明适应范围和应注意的问题。

  (3)对复习中暴露出的突出问题要进一步强调,必要时可选配一些有针对性的课外练习。

  总之,在初三数学总复习中,发掘教材,夯实基础是根本;共同参与,注重过程是前提;精选习题,提质减负是核心;强化训练,发展能力是目的。只有这样,才能以不变应万变,以一题带一片,开发学生的思维空间,真正训练学生的综合能力及水平,达到预期复习的效果。

  数学学习计划2

  三年级的奥数学习是小学奥数最重要的基础阶段,只有牢固掌握了三年级奥数最基本的知识技巧,才能有效的促进今后的数学学习。三年级是学习奥数至关重要的时期,三年级也是开拓思维的时间。孩子已经掌握了基本的计算能力,逻辑思维能力等,对图形也有一定的认识。

  从三年级起,大量的奥数专题便开始有所接触,因此,在专题的学习初期一定要打下良好的基础,好多五六年级专题知识学习比较差的学生正是因为三四年级基础知识没有学好的缘故。

  三年级不可小视——小升初的序幕开始慢慢拉开!它是考证的前奏、能力培养的起点、重点校培训班的开始,从三年级开始各个重点校开始通过培训班的形式筛选精英,好多孩子就会选择一些好的培训学校像新东方优能中学,提前进行培养,并且为考进重点校做准备。

  1、打好计算基础

  三年级奥数课本系统的介绍了四则运算及其巧算,关于数的计算是比较枯燥的内容,但它同时也是学好奥数的基础,是历次竞赛或选拔比赛中都必不可少的组成部分。

  就我校各位老师教学经验表明,在二、三年级打下良好运算基础的同学,一方面使得学生今后的数学学习更加轻松,另一方面,在高年级竞赛或选拔中往往会有相当大的优势。

  2、重视应用题

  从三年级起,奥数课本中介绍了大量的奥数专题知识,尤其是应用题部分,是所有年级所有竞赛考试中必考的重点知识。学生一定要在各个应用题专题学习的初期打下良好的基础。

  现在许多五六年级同学奥数水平提高非常困难,就是因为他们三年级的奥数专题知识掌握的不牢靠。

  3、掌握正确方法

  在学习计算的基础上,三年级逐步引入了基本应用题,简单图形问题等奥数知识,面对突然增大的奥数信息量,学生可以有意识的培养自己复习。

  总结等良好的学习习惯;同时,三年级是学生培养自己的奥数学习方法的最好时间。在三年级接触学习大量奥数知识的前提下,有意识地培养自己的学习方法对今后的奥数学习有非常重要的帮助。

  数学学习计划3

  一、课后及时回忆

  如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。

  可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲跟要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。

  二、定期重复巩固

  即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识跟方法的整体把握。

  三、科学合理安排

  复习一般可以分为集中复习跟分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。

  四、重点难点突破

  对所学的素材要进行分析、归类,找出重、难点,分清主次。在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点跟易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。

  五、复习效果检测

  随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。检测时必须独立,限时完成,保证检测出的效果的真实性,如果存在问题,应该找到错误的根源,并适时采取补救措施进行校正。目前市场上练习册多如牛毛,请在老师的指导下选用。

  数学学习计划4

  一、一年任务早知道科学安排时间

  如果我们对各门功课的复习制订切实可行的计划,那么成绩的提高是指日可待。复习时间的安排有长期、中期和短期。长期要与老师的安排大体一致,即整体进度跟着老师走。

  中期安排就数学而言,主要是抓好几大分支:函数、三角、数列、不等式等以及解析几何、立体几何。其中函数(含不等式)、数列、解析几何是重中之重。第一轮复习时要注意各分支之间的有机结合,综合程度要根据自己的实际情况而定,普通中学的学生对综合程度高的难题,可以暂时回避,先把基础内容掌握好。立体几何近年上海卷因两种教材并行考查相对容易。

  近期安排就是以章为单位或一周为单位,做个可行的计划,有时计划可以安排每天做些什么,任务要具体明确,操作性强。计划要结合老师的近期安排,跟着老师的节奏并在完成老师布置的作业后,针对自己的`薄弱环节重点突破(如忘掉的公式要记住,生疏的方法要熟练)。第一轮复习务必要把基本概念、解决一类问题的基本方法等扎实掌握。

  二、计划关键在落实提高学习效率

  一年之际在于春的意义谁都明白,对新高三的同学,9月份是关键时期,要适应高三的快节奏、大运动量的学习生活。

  双基落实到位。即要掌握各章节的基本概念和常见问题的解题方法,以及相应的技能技巧。有些同学之所以一听就懂,一看就会,一做就错的原因就在这方面做的不到位。课堂上不仅要和老师同步思考,还要争取与老师同步或快于老师算出正确答案。只听懂是远远不够的,它离掌握知识、形成能力还有很远距离。要知道纸上得来终觉浅,绝知此事要躬行。

  限时做好作业。做作业要给自己规定时间,像考试一样进入状态,同样遵循先易后难的原则,遇到难题要认真思考,但一时做不出要学会放弃。老师在批改时发现不会做或错误较多的地方会集体讲评。提倡做后满分,就是对做错的题目要认真订正,不妨准备一本错题集,记下错误原因,过段时间再回顾一下,争取不犯同样错误。有些同学做作业毫无时间观念,一边看公式一边做题,甚至互相对答案,这种作业不能反映实际水平,一旦考试就眼高手低,不是速度慢就是计算差错多。应引起部分同学(尤其是中等以下水平同学)的重视。

  减少低级错误。低级错误导致会而不对或对而不全,这是有些同学分数上不去的主要原因。大都是由审题失误、计算失误,考试时还会有紧张等心理因素引起。这些问题容易被以粗心的表象所掩盖,实际上经常的粗心就是一种不好的习惯,必须充分认识到它的危害性,并努力加以克服。

  总结:有关于高三数学复习方案和学习计划的内容就为您介绍完了,希望您通过对高三数学复习方案和学习计划文章的阅读,轻松应对20xx高考!

  数学学习计划5

  一、第一阶段复习计划:

  复习高数书上册第一章,需要达到以下目标:

  1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

  2、了解函数的有界性、单调性、周期性和奇偶性。

  3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

  4、掌握基本初等函数的性质及其图形,了解初等函数的概念。

  5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

  6、掌握极限的性质及四则运算法则。

  7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

  8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

  9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

  10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

  本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

  二、第二阶段复习计划:

  复习高数书上册第二章1—3节,需达到以下目标:

  1、理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

  2。掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

  3、了解高阶导数的概念,会求简单函数的高阶导数。

  本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记基本初等函数的导数公式;会用递推法计算高阶导数。

  三、第三阶段复习计划:

  复习高数书上册第二章4—5节,第三章1—5节。需达到以下目标:

  1、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

  2、理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理。

  3、掌握用洛必达法则求未定式极限的方法。

  4、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

  5、会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当时,图形是凹的;当时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

  本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

  四、第四阶段复习计划

  复习高数书上册第四章第1—3节。需达到以下目标:

  1、理解原函数的概念,理解不定积分的概念。

  2、掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法。会求简单函数的不定积分。

  本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

  五、第五阶段复习计划

  复习高数书上册第五章第1—3节。达到以下目标:

  1、理解定积分的几何意义。

  2、掌握定积分的性质及定积分中值定理。

  3、掌握定积分换元积分法与定积分广义换元法。

  本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

  六、第六阶段复习计划

  复习高数书上册第五章第4节,第六章第2节。

  达到以下目标:

  1、掌握积分上限的函数,会求它的导数,掌握牛顿—莱布尼茨公式。

  2、掌握定积分换元法与定积分广义换元法。会求分段函数的定积分。

  3、掌握用定积分计算一些几何量(如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。

  数学学习计划6

  高三数学学习可以分为三个阶段:

  1、一轮复习(至20XX年元旦前后):

  夯实基础,构建知识体系,强化能力训练;

  2、二轮复习(从一轮结束至三模结束):

  固化与应用,优化思维模式;

  3、考前冲刺(考前一个月):

  巩固已知,调整状态。

  4、一轮复习特点:

  时间长,任务重,此特点与《课程标准》中“培养学生实事求是的态度,锲而不舍的精神”吻合;学生易懈怠、易迷茫、易焦虑。

  一轮复习数学资料:一轮复习讲义、教材(10本)、章节测试、xx年——xx年高考试题分类汇编、xx套模拟试题、20XX年高考真题。

  一轮复习着重从知识、方法、能力、技巧四方面入手,为实现二轮复习“数学思想统领学习”的目标做下坚实基础。知识与方法可以跟随老师的讲解及时整理记忆,与原有知识结构实现对接,实现知识与方法的零死角;能力的提升需要自己细致扎实的练习与思考,基础能力:总结反思、语言表达、阅读理解,学科能力:空间想象、抽象概括、推理论证、运算求解、数据处理;技巧是从勤勉的实践中点滴积累起来的,是反复感知与应用后沉淀下的极其实用的小绝招,每个个体总结的技巧是不尽一致的。

  一轮复习思路千百种,现仅从“如何搭配练习册及试卷的应用”的角度对一轮复习大致框架加以论述:

  1、无论复习哪一学科,都要有一个系统的练习过程,认准一本复习资料加以练习不放松。课堂上,按照拟好的“主线”进行复习,“函数、几何、概率统计、运算、算法、数学应用”六条主线将课标内容纵横交织,打破资料章节顺序,优化组合串讲课标所要求考点。

  2、新课标精神的直接体现就是教材,重读教材意义重大。要读初学时未关注的细节,要关注数学概念、法则、结论的发展过程。教材上练习题不必每道必做,根据实际情况,有选择地挑出一些必做题。我将依照教材内容组织一张练习卷,尽可能检验出大家对教材的熟悉程度及理解的深度。

  3、必备的章节模拟训练是不可少的,一段时间的复习后来个小测验,及时对所学有一个检验,也时刻提醒我们要注意多回头看看。章节测试所用试题由我为大家提供,在每个章末测试一张卷,限时训练,之后,学生再进行局部弥补性练习。

  4、前几年的高考题就是最好的模拟题,去年暑假始,我们已着手做“分类汇编”,一轮复习时,紧跟模块复习完成“分类汇编”上尚未完成的任务,并且从做过的试题中寻找规律性的东西也是必须面对的任务。

  5、一轮复习战线过长,不对过往重点知识加以多次循环则不能识其本质。天利38套的应用:每周每个同学利用课余时间写一套模拟题,每周日晚上“就题论题,不举一反三”。目的:化整为零,保持新鲜感,给学生以充分思考交流的空间和时间。计划进行20周,余下的试卷由学生自行处理。

  6、不能急于完成“20XX年高考真题”,我们可以使其发挥更大利用价值。将这19套真题作为一个研究平台,我们要逐一细致分析试卷的规律性。从哪些角度分析?分析什么内容?如何利用分析结论?这些都会使我们的思考更有条理,使我们的表达更清晰。