高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

成都中考数学考点归纳

更新时间:2023-08-16 12:31:54 来源:高考在线

成都中考数学考点归纳

1反比例函数

2反比例函数的图像与性质

3反比例函数的应用

※反比例函数的概念:一般地,(k为常数,k≠0)叫做反比例函数,即y是x的反比例函数。(x为自变量,y为因变量,其中x不能为零)

※反比例函数的等价形式:y是x的反比例函数←→←→←→←→变量y与x成反比例,比例系数为k.

※判断两个变量是否是反比例函数关系有两种方法:①按照反比例函数的定义判断;②看两个变量的乘积是否为定值<即>。(通常第二种方法更适用)

※反比例函数的图象由两条曲线组成,叫做双曲线

※反比例函数的画法的注意事项:①反比例函数的图象不是直线,所“两点法”是不能画的;

②选取的点越多画的图越准确;

③画图注意其美观性(对称性、延伸特征)。

※反比例函数性质:

①当k>0时,双曲线的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;

②当k<0时,双曲线的两支分别位于二、四象限;在每个象限内,y随x的增大而增大;

③双曲线的两支会无限接近坐标轴(x轴和y轴),但不会与坐标轴相交。

※反比例函数图象的几何特征:(如图4所示)

点P(x,y)在双曲线上都有

中考数学考点归纳

【因式分解】

1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.

2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.

3.公因式的确定:系数的公约数?相同因式的最低次幂.

注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.

4.因式分解的公式:

(1)平方差公式:a2-b2=(a+b)(a-b);

(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.

5.因式分解的注意事项:

(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;

(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;

(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;

(4)因式分解的最后结果要求每一个因式的首项符号为正;

(5)因式分解的最后结果要求加以整理;

(6)因式分解的最后结果要求相同因式写成乘方的形式.

6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.

7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“x2+px+q是完全平方式?”.

中考数学考点

一:公式法

利用一些现有公式对某一类型的代数式直接配方

如:a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

a2+b2+c2+2ab+2ac+2bc=(a+b+c)2

二:函数法

数学中的很多东西都是交集的,对于某些特定的二次函数(只有一个顶点,且该定点在x轴上),令其顶点坐标为(a,0),则该函数对应的关于自变量的代数式就可以配方为(x-a)2

配方法

对于代数式x2-2x+1可以配方为(x-1)2

【用公式法求解一元二次方程】

步骤

1.化方程为一般式:ax2+bx+c=0(a≠0)

2.确定判别式,计算Δ。Δ=b2-4ac;

3.若Δ>0,该方程在实数域内有两个不相等的实数根:x=[-b±√Δ]]/2a。

若Δ=0,该方程在实数域内有两个相等的实数根:x1=x2=-b/2a;

若Δ<0,该方程在实数域内无实数根,但在虚数域内解为x=-b±√(b平方-4ac)/2a。

判别式

一般的,式子b^2-4ac叫做方程ax^2+bx+c=0(a≠0)的判别式,通常用希腊字母Δ表示它,即Δ=b^2-4ac

求根公式

当Δ≥0时,方程ax^2+bx+c=0(a≠0)的实数根可写为x=(-b±√b^2-4ac)/2a的形式,这个式子叫做一元二次方程ax^2+bx+c=0(a≠0)的求根公式,由求根公式可知,一元二次方程的根不可能多于两个。

注意事项

一定不会出现不能用公式法解一元二次方程的情况。(所谓“一元二次方程万能公式”)

但在能直接开方或者因式分解时用直接开方法和分解因式法。