高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

生活化学的各种材料有什么

更新时间:2023-08-10 14:18:00 来源:高考在线

初中化学知识点:无机材料

定义:

无机材料指由无机物单独或混合其他物质制成的材料。通常指由硅酸盐、铝酸盐、硼酸盐、磷酸盐、锗酸盐等原料和/或氧化物、氮化物、碳化物、硼化物、硫化物、硅化物、卤化物等原料经一定的工艺制备而成的材料。常见的无机非金属材料:水泥,玻璃,陶瓷。

1.常见的无机非金属材料:水泥,玻璃,陶瓷。

2.玻璃,玻璃钢,有机玻璃的区别:

玻璃:属于硅酸盐类非金属材料。

玻璃钢:是由环氧树脂和玻璃纤维复合而得的强度类似钢材的增强塑料,是一种复合材料。

有机玻璃:是一种塑料,属于有机合成材料。

无机材料的知识导图

分类:

无机材料一般可以分为传统的和新型的无机材料两大类。

传统的无机材料是指以二氧化硅及其硅酸盐化合物为主要成分制备的材料,因此又称硅酸盐材料。

新型无机材料是用氧化物、氮化物、碳化物、硼化物、硫化物、硅化物以及各种非金属化合物经特殊的先进工艺制成的材料。

无机材料的知识拓展

无机非金属材料:

(1)高恨性能结构陶瓷

高性能结构陶瓷具有比强度高、耐高温、耐磨损、耐腐蚀等优越性能。由于技术进步,结构陶瓷的性能提高,使其对传统金属材料的优势日益显示出来,国际上使用结构陶瓷部件已经形成很大的市场。

(2)电子功能陶瓷材料

微电子工业是世界经济发展的一个热点。我国已将微电子产业列入“十五”的发展重点,电子功能陶瓷是微电子器件的基本材料之一,用途广泛。

(3)敏感功能陶瓷材料

敏感功能陶瓷在机电一体化用的传感器和微动作执行机构等方面有广泛的应用,我国在这方面有很大的进步,但一些关键的高性能传感器等产品与国外同类产品仍有差距,整体技术水平急待提高。

(4)光功能陶瓷材料

新型功能陶瓷材料具有独特的光电性能,已成为光通信产业不可缺少的材料。目前我国光通信用功能陶瓷材料与国外水平相比有较大差距,已成为我国信息技术和产业发展的瓶颈之一。

(5)人工晶体

人工晶体又称合成晶体。单晶及多晶具有各种独特的物理性质,能实现电、光、声、热、力等不同能量形式的交互作用和转化,在现代科学技术中应用十分广泛。人工晶体按其物理性质和物理效应可分为半导体晶体、压电晶体、闪烁晶体、激光晶体等。人工晶体的发展方向之一是低维化,需要多种衬底晶体。

(6)功能玻璃

功能玻璃是指采用精制、高纯或新型原料,并采用新工艺技术制成的具有特殊性能和功能的玻璃或无机非晶态材料,是高技术领域特别是光电技术不可缺少的基础材料。

(7)催化及环保用陶瓷

催化剂载体既要有良好机械性能,又要求有化学环境稳定性和特定化学物质反应选择性。在汽车尾气和化工环保行业得到广泛应用。

初中化学知识点:复合材料

定义:

人们将两种或两种以上的不同材料复合起来,使各种材料在性能上取长补短,制成了比原来单一材料的性能优越得多的复合材料。如钢筋混凝土、玻璃钢。

a)概念:由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。

b)复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。

c)常见的复合材料:钢筋混凝土。

复合材料的类别:

(1)聚合物复合材料主要是指纤维增强聚合物材料。如将碳纤维包埋在环氧树脂中使复合材料强度增加,用于制造网球拍、高尔夫球杆和雪橇等。玻璃纤维复合材料是玻璃纤维与聚酯的复合体,可以用于制作结构材料,如汽车和飞机中的某些部件、桥体的结构材料和船体等,其强度可与钢材相比。增强的聚酰亚胺树脂可用于制作汽车的塑料发动机,使发动机质量减小,节约燃料。

(2)陶瓷基复合材料为改变陶瓷的脆性,将石墨或聚合物纤维包埋在陶瓷中,制成的复合材料有一定的韧性,不易碎裂。而且可以在极高的温度下使用。这类陶瓷基复合材料有望成为汽车、火箭发动机的新型结构材料。金属网陶瓷基材料具有超强刚性,可作为防弹衣的材料。

(3)金属基复合材料在金属表面涂层,可以保护金属表面或赋予金属表面某种特殊功能,如金属表面涂油漆可以抗腐蚀;金属表面作搪瓷内衬可制作化学反应釜;金属表面镀铬可使表面光亮;金属表面涂以高分子弹性体赋予表面韧性,可作为抗气蚀材料用于水轮机、汽轮机的不锈钢叶片上,延长其使用年限;在纯的硅晶片上复合多层有专门功能的物质可用于计算机的集成电路片。近年来出现的铝一硼纤维,其比强度为铝合金的2倍。

优点:

复合材料集中了组成材料的优点,具有更优异的综合性能。复合材料既能充分利用资源,又能节约能源。如钢筋混凝土就是钢筋和混凝土的复合材料,机动车的轮胎是用合金钢与橡胶的复合材料制成的,快艇的船身、餐厅的桌椅是由塑料中嵌入玻璃纤维制成的玻璃纤维增强塑料(玻璃钢)制作的,飞机的机翼、火箭的发动机壳体是用碳纤维复合材料制成的。因此复合材料成为大有发展前途的一类新型材料。

初中化学知识点:纳米材料

定义:

材料的基本结构单元至少有一维处于纳米尺度范围(一般在11100nm),并由此具有某些新特性的材料(1微米=1000纳米)。

纳米级结构材料简称为纳米材料(nanometermaterial),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如:熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。

材料分类:

纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。

(1)纳米粉末

又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。

(2)纳米纤维

指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。静电纺丝法是制备无机物纳米纤维的一种简单易行的方法。

(3)纳米膜

纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。

(4)纳米块体

纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。

发展历程:

1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。

真正有意识的研究纳米粒子可追溯到20世纪30年代的日本的为了军事需要而开展的“沉烟试验”,但受到当时试验水平和条件限制,虽用真空蒸发法制成了世界第一批超微铅粉,但光吸收性能很不稳定。

到了20世纪60年代人们开始对分立的纳米粒子进行研究。1963年,Uyeda用气体蒸发冷凝法制的了金属纳米微粒,并对其进行了电镜和电子衍射研究。1984年德国萨尔兰大学(Saarland University)的Gleiter以及美国阿贡实验室的Siegal相继成功地制得了纯物质的纳米细粉。Gleiter在高真空的条件下将粒子直径为6nm的铁粒子原位加压成形,烧结得到了纳米微晶体块,从而使得纳米材料的研究进入了一个新阶段。

1990年7月在美国召开了第一届国际纳米科技技术会议(International Conference on Nanoscience&Technology),正式宣布纳米材料科学为材料科学的一个新分支。

自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段:

第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。

第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。

第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。