高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

华师初中数学考点

更新时间:2023-08-05 17:24:28 来源:高考在线

华师初中数学考点

一、 直线、相交线、平行线

1.线段、射线、直线三者的区别与联系

从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。

2.线段的中点及表示

3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)

4.两点间的距离(三个距离:点-点;点-线;线-线)

5.角(平角、周角、直角、锐角、钝角)

6.互为余角、互为补角及表示方法

7.角的平分线及其表示

8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)

9.对顶角及性质

10.平行线及判定与性质(互逆)(二者的区别与联系)

11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成

13.公理、定理

14.逆命题

二、 三角形

分类:⑴按边分;

⑵按角分

1.定义(包括内、外角)

2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,

3.三角形的主要线段

讨论:①定义②_线的交点—三角形的×心③性质

① 高线②中线③角平分线④中垂线⑤中位线

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②专用方法

6.三角形的面积

⑴一般计算公式⑵性质:等底等高的三角形面积相等。

7.重要辅助线

⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线

8.证明方法

⑴直接证法:综合法、分析法

⑵间接证法—反证法:①反设②归谬③结论

⑶证线段相等、角相等常通过证三角形全等

⑷证线段倍分关系:加倍法、折半法

⑸证线段和差关系:延结法、截余法

⑹证面积关系:将面积表示出来

三、 四边形

分类表:

1.一般性质(角)

⑴内角和:360°

⑵顺次连结各边中点得平行四边形。

推论1:顺次连结对角线相等的四边形各边中点得菱形。

推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

⑶外角和:360°

2.特殊四边形

⑴研究它们的一般方法:

⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定

⑶判定步骤:四边形→平行四边形→矩形→正方形

┗→菱形——↑

⑷对角线的纽带作用:

3.对称图形

⑴轴对称(定义及性质);⑵中心对称(定义及性质)

4.有关定理:①平行线等分线段定理及其推论1、2

②三角形、梯形的中位线定理

③平行线间的距离处处相等。(如,找下图中面积相等的三角形)

5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。

6.作图:任意等分线段。

初中数学考点总结

一、 基本概念

1.方程、方程的解(根)、方程组的解、解方程(组)

2. 分类:

二、 解方程的依据—等式性质

1.a=b←→a+c=b+c

2.a=b←→ac=bc (c≠0)

三、 解法

1.一元一次方程的解法:去分母→去括号→移项→合并同类项→

系数化成1→解。

2. 元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法

②加减法

四、 一元二次方程

1.定义及一般形式:

2.解法:⑴直接开平方法(注意特征)

⑵配方法(注意步骤—推倒求根公式)

⑶公式法:

⑷因式分解法(特征:左边=0)

3.根的判别式:

4.根与系数顶的关系:

逆定理:若 ,则以 为根的一元二次方程是: 。

5.常用等式:

五、 可化为一元二次方程的方程

1.分式方程

⑴定义

⑵基本思想:

⑶基本解法:①去分母法②换元法(如, )

⑷验根及方法

2.无理方程

⑴定义

⑵基本思想:

⑶基本解法:①乘方法(注意技巧!!)②换元法(例, )⑷验根及方法

3.简单的二元二次方程组

由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

初中数学考点

一、平面直角坐标系

1.各象限内点的坐标的特点

2.坐标轴上点的坐标的特点

3.关于坐标轴、原点对称的点的坐标的特点

4.坐标平面内点与有序实数对的对应关系

二、函数

1.表示方法:⑴解析法;⑵列表法;⑶图象法。

2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有

意义。

3.画函数图象:⑴列表;⑵描点;⑶连线。

三、几种特殊函数

(定义→图象→性质)

1. 正比例函数

⑴定义:y=kx(k≠0) 或y/x=k。

⑵图象:直线(过原点)

⑶性质:①k>0,…②k<0,…

2. 一次函数

⑴定义:y=kx+b(k≠0)

⑵图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。

⑶性质:①k>0,…②k<0,…

⑷图象的四种情况:

3. 二次函数

⑴定义:

特殊地, 都是二次函数。

⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。 用配方法变为 ,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a<0时,开口向下。

⑶性质:a>0时,在对称轴左侧…,右侧…;a<0时,在对称轴左侧…,右侧…。

4.反比例函数

⑴定义: 或xy=k(k≠0)。

⑵图象:双曲线(两支)—用描点法画出。

⑶性质:①k>0时,图象位于…,y随x…;②k<0时,图象位于…,y随x…;③两支曲线无限接近于坐标轴但永远不能到达坐标轴。

四、重要解题方法

1. 用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:

2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。