高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

中考数学知识点梳理笔记

更新时间:2023-08-04 07:53:08 来源:高考在线

【中考数学的重点和难点分析】

构建完整的知识框架

1、构建完整的知识框架是我们解决问题的基础,想要学好数学必须重视基础概念,必须加深对知识点的理解,然后会运用知识点解决问题,遇到问题自己学会反思及多维度的思考,最后形成自己的思路和方法。但有很多初中学生不重视书本的概念,对某些概念一知半解,对知识点没有吃透,知识体系不完整,就会出现成绩飘忽不定的现象。

2、正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。只有基础扎实,解决问题才能得心应手,成绩才会提高。

初中数学中考知识重难点分析

1、函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。

特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。

而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。有一定难度。

如果在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。

2、整式、分式、二次根式的化简运算

整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。

中考一般以选择、填空形式出现,但却是解答题完整解答的基础。运算能力的熟练程度和答题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进而后面的的方程、不等式、函数也无法学好。

3、应用题,中考中占总分的30%左右

包括方程(组)应用,一元一次不等式(组)应用,函数应用,解三角形应用,概率与统计应用几种题型。

一般会出现二至三道解答题(30分左右)及2—3道选择、填空题(10分—15分),占中考总分的30%左右。

现在中考对数学实际应用的考察会越来越多,数学与生活联系越来越紧密,应用题要求学生的理解辨别能力很强,能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。方程思想、函数思想、数形结合思想也是中学阶段一种很重要的数学思想、是解决很多问题的工具。

4、三角形(全等、相似、角平分线、中垂线、高线、解直角三角形)、四边形(平行四边形、矩形、菱形、正方形),中考中占总分25%左右。

三角形是初中几何图形中内容最多的一块知识,也是学好平面几何的必要基础,贯穿初二到到初三的几何知识,其中的几何证明题及线段长度和角度的计算对很多学生是难点。

只有学好了三角形,后面的四边形乃至圆的证明就容易理解掌握了,反之,后面的一切几何证明更将无从下手,没有清晰的思路。

其中解三角形在初三下册学习,是以直角三角形为基础的,在中考中会以船的触礁、楼高、影子问题出现一道大题。因此在初中数学学习中也是一个重点。

四边形在初二进行学习的,其中特殊四边形的性质及判定定理很多,容易混淆,深刻理解这些性质和判定、理清它们之间的联系是解决证明和计算的基础,四边形中题型多变,计算、证明都有一定难度。经常在中考选择题、填空题及解答题的压轴题(最后一题)中出现,对学生综合运用知识的能力要求较高。

5、圆,中考中占总分的10%左右

包括圆的基本性质,点、直线与圆位置关系,圆心角与圆周角,切线的性质和判定,扇形弧长及面积,这章节知识是在初三学习的。

其中切线的性质和判定、圆中的基本性质的理解和运用、直线与圆的位置关系、圆中的一些线段长度及角度的计算是重点也是难点。

【中考数学:必背几何知识点】

1. 同角(或等角)的余角相等。

2. 对顶角相等。

3. 三角形的一个外角等于和它不相邻的两个内角之和。

4. 在同一平面内垂直于同一条直线的两条直线是平行线。

5. 同位角相等,两直线平行。

6. 等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。

7. 直角三角形中,斜边上的中线等于斜边的一半。

8. 在角平分线上的点到这个角的两边距离相等。及其逆定理。

9. 夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。

10. 一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。

11. 有三个角是直角的四边形、对角线相等的平行四边形是矩形。

12. 菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。

13. 正方形的四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。

14. 在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等。

15. 垂直于弦的直径平分这条弦,并且平分弦所对弧。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

16. 直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。

17. 相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比。相似三角形面积的比等于相似比的平方。

18. 圆内接四边形的对角互补,并且任何一个外角等于它的内对角。

19. 切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

20. 切线的性质定理①经过圆心垂直于切线的直线必经过切点。②圆的切线垂直于经过切点的半径。③经过切点垂直于切线的直线必经过圆心。

21. 切线长定理从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。

22. 弦切角定理弦切角的度数等于它所夹的弧的度数的一半。弦切角等于它所夹的弧所对的圆周角。

23. 相交弦定理;切割线定理;割线定理。

【中考数学的核心考点】

知识点1:一元二次方程的基本概念

1.一元二次方程3x2+5x-2=0的常数项是-2.

2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.

3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.

4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.

知识点2:直角坐标系与点的位置

1.直角坐标系中,点A(3,0)在y轴上。

2.直角坐标系中,x轴上的任意点的横坐标为0.

3.直角坐标系中,点A(1,1)在第一象限.

4.直角坐标系中,点A(-2,3)在第四象限.

5.直角坐标系中,点A(-2,1)在第二象限.

知识点3:已知自变量的值求函数值

1.当x=2时,函数y=的值为1.

2.当x=3时,函数y=的值为1.

3.当x=-1时,函数y=的值为1.

知识点4:基本函数的概念及性质

1.函数y=-8x是一次函数.

2.函数y=4x+1是正比例函数.

3.函数是反比例函数.

4.抛物线y=-3(x-2)2-5的开口向下.

5.抛物线y=4(x-3)2-10的对称轴是x=3.

6.抛物线的顶点坐标是(1,2).

7.反比例函数的图象在第一、三象限.

知识点5:数据的平均数中位数与众数

1.数据13,10,12,8,7的平均数是10.

2.数据3,4,2,4,4的众数是4.

3.数据1,2,3,4,5的中位数是3.

知识点6:特殊三角函数值

1.cos30°= .

2.sin260°+ cos260°= 1.

3.2sin30°+ tan45°= 2.

4.tan45°= 1.

5.cos60°+ sin30°= 1.

知识点7:圆的基本性质

1.半圆或直径所对的圆周角是直角.

2.任意一个三角形一定有一个外接圆.

3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.

4.在同圆或等圆中,相等的圆心角所对的弧相等.

5.同弧所对的圆周角等于圆心角的一半.

6.同圆或等圆的半径相等.

7.过三个点一定可以作一个圆.

8.长度相等的两条弧是等弧.

9.在同圆或等圆中,相等的圆心角所对的弧相等.

10.经过圆心平分弦的直径垂直于弦。

知识点8:直线与圆的位置关系

1.直线与圆有唯一公共点时,叫做直线与圆相切.

2.三角形的外接圆的圆心叫做三角形的外心.

3.弦切角等于所夹的弧所对的圆心角.

4.三角形的内切圆的圆心叫做三角形的内心.

5.垂直于半径的直线必为圆的切线.

6.过半径的外端点并且垂直于半径的直线是圆的切线.

7.垂直于半径的直线是圆的切线.

8.圆的切线垂直于过切点的半径.