高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

中考数学图形的公式定理整理

更新时间:2023-08-13 16:07:48 来源:高考在线

初中数学:图形与变换的定理与公式

图形与变换

图形的轴对称

轴对称的基本性质:对应点所连的线段被对称轴平分;

等腰三角形、矩形、菱形、等腰梯形、正多边形、圆是轴对称图形;

图形的平移

图形平移的基本性质:对应点的连线平行且相等;

图形的旋转

图形旋转的基本性质:对应点到旋转中心的距离相等,对应点与旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等;

平行四边形、矩形、菱形、正多边形(边数是偶数)、圆是中心对称图形

初中数学:图形的认识定理与公式

(1)角

角平分线的性质:角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角平分线上。

(2)相交线与平行线

同角或等角的补角相等,同角或等角的余角相等;

对顶角的性质:对顶角相等

垂线的性质:

①过一点有且只有一条直线与已知直线垂直;

②直线外一点有与直线上各点连结的所有线段中,垂线段最短;

线段垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线;

线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线;

平行线的定义:在同一平面内不相交的两条直线叫做平行线;

平行线的判定:

①同位角相等,两直线平行;

②内错角相等,两直线平行;

③同旁内角互补,两直线平行;

平行线的特征:

①两直线平行,同位角相等;

②两直线平行,内错角相等;

③两直线平行,同旁内角互补;

平行公理:经过直线外一点有且只有一条直线平行于已知直线。

(3)三角形

三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

三角形的内角和定理:三角形的三个内角的和等于;

三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

三角形的三条角平分线交于一点(内心);

三角形的三边的垂直平分线交于一点(外心);

三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

全等三角形的判定:

①边角边公理(SAS)

②角边角公理(ASA)

③角角边定理(AAS)

④边边边公理(SSS)

⑤斜边、直角边公理(HL)

等腰三角形的性质:

①等腰三角形的两个底角相等;

②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

初中数学:勾股定理

1:勾股定理

直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2)

要点诠释:

勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:

(1)已知直角三角形的两边求第三边

(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边

(3)利用勾股定理可以证明线段平方关系的问题

2:勾股定理的逆定理

如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:

勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:

(1)首先确定最大边,不妨设最长边长为:c;

(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△abc为锐角三角形)。< p="">

3:勾股定理与勾股定理逆定理的区别与联系

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;

联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

4:互逆命题的概念

如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

5:勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法

用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变

②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理