高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

一元二次方程知识点三篇

更新时间:2023-08-12 12:49:15 来源:高考在线

一元二次方程知识点总结

1. 一元二次方程的一般形式: a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是方法,配方法使用较少。

3. 一元二次方程根的判别式: 当ax2+bx+c=0 (a≠0)时,Δ=b2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:

Δ>0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根;

Δ<0 <=> 无实根; Δ≥0 <=> 有两个实根(等或不等)。

一元二次方程复习提纲

【知识与技能】

掌握应用因式分解的方法,会正确求一元二次方程的解。

【过程与方法】

通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。

【情感态度价值观】

通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。

【教学重点】

运用因式分解法求解一元二次方程。

【教学难点】

发现与理解分解因式的方法。

探究新知

问题1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?

学生小组讨论,探究后,展示三种做法。

问题:小颖用的什么法?——公式法

小明的解法对吗?为什么?——违背了等式的性质,x可能是零。

小亮的解法对吗?其依据是什么——两个数相乘,如果积等于零,那么这两个数中至少有一个为零。

问题2:学生探讨哪种方法对,哪种方法错;错的原因在哪?你会用哪种方法简便]

师引导学生得出结论:

如果a·b=0,那么a=0或b=0

(如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。)

“或”有下列三层含义

①a=0且b≠0 ②a≠0且b=0 ③a=0且b=0

问题3:

(1)什么样的一元二次方程可以用因式分解法来解?

(2)用因式分解法解一元二次方程,其关键是什么?

(3)用因式分解法解一元二次方程的理论依据是什么?

(4)用因式分解法解一元二方程,必须要先化成一般形式吗?

因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。这种用分解因式解一元二次方程的方法称为因式分解法。

1.用分解因式法的条件是:方程左边易于分解,而右边等于零;

2.关键是熟练掌握因式分解的知识;

3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。”

因式分解法求解一元二次方程

1.方程化为一般形式;

2.方程左边因式分解;

3.至少一个一次因式等于零得到两个一元一次方程;

4.两个一元一次方程的解就是原方程的解。

一元二次方程的解法

1.直接开方法解一元二次方程

(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.

(2)直接开平方法的理论依据:平方根的定义.

(3)能用直接开平方法解一元二次方程

要点诠释:

用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.

2.因式分解法解一元二次方程

(1)用因式分解法解一元二次方程的步骤:

①将方程右边化为0;

②将方程左边分解为两个一次式的积;

③令这两个一次式分别为0,得到两个一元一次方程;

④解这两个一元一次方程,它们的解就是原方程的解.

(2)常用的因式分解法

提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.

要点诠释:

(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;

(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;

(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.