高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

初中常见的公式及定理三篇

更新时间:2023-08-03 05:37:14 来源:高考在线

初中数学:常见的公式

91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94 判定定理3 三边对应成比例,两三角形相似(SSS)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

三角函数公式大全

三角函数和差化积公式

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角函数积化和差公式

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

三角函数万能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

三角函数半角公式

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

三角函数三倍角公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

三角函数倍角公式

sin(2α)=2sinα·cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三角函数两角和与差公式

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

初中数学重要概念性质及定理-圆

1. 圆的对称性

圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.

2. 垂径定理及其推论

垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

3. 圆心角定理

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 同样还可以得到:

(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;

(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等.

4. 圆周角定理及推论

圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对 的弦是直径.

5. 圆内接四边形的性质:圆内接四边形的对角互补.