高考在线 专业排名 专业介绍 大学介绍 大学排名 大学分数 全国高校 考试讲解 高考状元 高考志愿

中考数学函数知识点总结有哪些

更新时间:2023-08-15 16:39:30 来源:高考在线

中考数学知识点汇总:一次函数的知识点总结

一次函数的定义

一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

函数的表示方法

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

一次函数的性质

一般地,形如y=kx+b(k,b是常数,且k≠0),那么y叫做x的一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数

注:一次函数一般形式y=kx+b(k不为0)

a).k不为0

b).x的指数是1

c).b取任意实数

一次函数y=kx+b的图像是经过(0,b)和(-b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看做直线y=kx平移|b|个单位长度得到。(当b>0时,向上平移;b<0时,向下平移)具体如下:

正比例函数和一次函数

正比例函数一次函数

概念一般地,形如y=kx+b(k,b是常数,且k≠0),那么y叫做x的一次函数一般地,形如y=kx+b(k,b是常数,且k≠0),那么y叫做x的一次函数,当b=0时,y=kx+b即y=kx,即为正比例函数

自变量范围X为全体实数

图像一条直线

必过点(0,0)、(1,k)(0,b)、(-b/k,0)

走向k>0时,直线经过一、三象限

k<0时,直线经过二、四象限

k>0,b>0,直线经过一、二、三象限

k>0,b<0,直线经过一、三、三象限

k<0,b>0,直线经过一、二、四象限

k<0,b<0,直线经过二、三、三象限

增减性k>0,y随x的增大而减小;(从左向右上升)

k<0,y随x的增大而减小。(左向右下降)

倾斜度|k|越大,越接近y轴;k越小,越接近x轴

图像的平移b>0时,将直线y=kx的图像向上平移|b|个单位

b<0时,将直线y=kx的图像向下平移|b|个单位

确定函数定义域的方法

(1)关系式为整式时,函数定义域为全体实数;

(2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零;

(4)关系式中含有指数为零的式子时,底数不等于零;

(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

用待定系数法确定函数解析式的一般步骤

(1)根据已知条件写出含有待定系数的函数关系式;

(2)将x、y的几对值或图像上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程

(3)解方程得出未知系数的值;

(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。

中考数学知识点汇总:二次函数的知识点

二次函数概念:

二次函数的概念:一般地,形如ax^2+bx+c=0的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数a≠0,而b,c可以为零.二次函数的定义域是全体实数.

二次函数图像与性质口诀

二次函数抛物线,图象对称是关键;

开口、顶点和交点,它们确定图象限;

开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

中考数学知识点汇总:反比例函数的知识点

反比例函数的定义

定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

反比例函数的性质

函数y=k/x称为反比例函数,其中k≠0,其中X是自变量,

1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

3.x的取值范围是:x≠0;

y的取值范围是:y≠0。

4..因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴

5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

反比例函数的一般形式

一般地,如果两个变量x、y之间的关系可以表示成

(k为常数,k≠0)的形式,那么称y是x的反比例函数。

其中,x是自变量,y是函数。由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。

补充说明:1.反比例函数的解析式又可以写成:(k是常数,k≠0).

2.要求出反比例函数的解析式,利用待定系数法求出k即可.

反比例函数解析式的特征

⑴等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。

⑵比例系数

⑶自变量的取值为一切非零实数。

⑷函数的取值是一切非零实数。

反比列函数与一次函数图像的交点